5 research outputs found

    PHANTOM: a Monte Carlo event generator for six parton final states at high energy colliders

    Get PDF
    PHANTOM is a tree level Monte Carlo for six parton final states at proton--proton, proton--antiproton and electron--positron collider at O(alpha_ew^6) and O(alpha_ew^4*alpha_s^2) including possible interferences between the two sets of diagrams. This comprehends all purely electroweak contribution as well as all contributions with one virtual or two external gluons. It can generate unweighted events for any set of processes and it is interfaced to parton shower and hadronization packages via the last Les Houches Accord protocol. It can be used to analyze the physics of boson boson scattering, Higgs boson production in boson boson fusion, t-tbar and three boson production.Comment: Version updated to agree with published one in Comp.Phys.Com

    1st Workshop on CP Studies and Non-standard Higgs Physics

    No full text
    There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories which go beyond the Standard Model and its minimal, CP-conserving supersymmetric extension: two-Higgs-doublet models and minimal supersymmetric models with CP violation, supersymmetric models with an extra singlet, models with extra gauge groups or Higgs triplets, Little Higgs models, models in extra dimensions, and models with technicolour or other new strong dynamics. For each of these scenarios, this report presents an introduction to the phenomenology, followed by contributions on more detailed theoretical aspects and studies of possible experimental signatures at the LHC and other colliders.There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories which go beyond the Standard Model and its minimal, CP-conserving supersymmetric extension: two-Higgs-doublet models and minimal supersymmetric models with CP violation, supersymmetric models with an extra singlet, models with extra gauge groups or Higgs triplets, Little Higgs models, models in extra dimensions, and models with technicolour or other new strong dynamics. For each of these scenarios, this report presents an introduction to the phenomenology, followed by contributions on more detailed theoretical aspects and studies of possible experimental signatures at the LHC and other colliders
    corecore