47 research outputs found

    Evaluation by re-derivation of a paternal line after 18 generations on seminal traits, proteome and fertility

    Full text link
    [EN] Males from a paternal line selected for growth traits were used to produce semen doses at insemination centres and farms in a breeding scheme for rabbit meat production. The aim of this study was to assess whether a program of selection by daily gain in fattening period changed the seminal traits, plasma and sperm proteome and the fertility of semen when used in artificial insemination. Thirty-nine males from a paternal line were obtained by re-derivation from vitrified embryos with a difference of 18 generations (G21V and G39V). Sperm production parameters, morphological traits, sperm motility parameters and viability were evaluated from ejaculates. Seminal plasma and sperm proteome of three pool ejaculates from 10 mature males of each group were analysed and semen doses were used to inseminate 311 females. Only the percentage of abnormal sperm showed significant differences, with G21V presenting fewer abnormal sperm than G39V (10.5 +/- 2.63 vs 23.8 +/- 1.98). The discriminant analysis (DA-PLS) showed a clear effect of the generation for plasma and sperm proteome. In seminal plasma, 643 proteins were reported and 64 proteins were differentially expressed, of which 56 were overexpressed in G39V (87.5%). Sperm proteome reported 1360 proteins with 132 differentially abundant proteins. Of the total, 89 proteins were overexpressed in G39V (67.4%). From the 64 and 132 differentially abundant proteins of plasma and sperm, 19 and 26 had a FC >1.5, 12 and 13 of them belonging to the Oryctolagus cuniculus taxonomy, respectively. Despite observing differences in important proteins related to capacitation, sperm motility or immunoprotection and consequently to the fertilization process (TMPRSS2, Serpin family, Farn71f1, ATPase H+ transporting accessory protein 2, carbonic anhydrase 2, UDP-glucose glycoprotein glucosyltransferase 2), no differences in fertility and prolificacy were detected when commercial seminal doses were used for insemination from both male groups. However, overabundance of KIAA1324 protein can be related to the increase in abnormal sperm after selection by growth rate.This research was supported by AGL2017-85162-C2-1-R research project funded by Ministerio de Economia, Industria y Competitividad (MICINN, Spain). X Garcia-Dominguez was supported by a research grant from MICINN (BES-2015-072429). English text version was revised by N. Macowan English Language Service.JuĂĄrez, JD.; Marco-JimĂ©nez, F.; TalavĂĄn, AM.; GarcĂ­a-DomĂ­nguez, X.; Viudes-De-Castro, MP.; Lavara, R.; Vicente AntĂłn, JS. (2020). Evaluation by re-derivation of a paternal line after 18 generations on seminal traits, proteome and fertility. Livestock Science. 232:1-13. https://doi.org/10.1016/j.livsci.2019.103894S113232Antalis, T. M., Bugge, T. H., & Wu, Q. (2011). Membrane-Anchored Serine Proteases in Health and Disease. Proteases in Health and Disease, 1-50. doi:10.1016/b978-0-12-385504-6.00001-4Bezerra, M. J. B., Arruda-Alencar, J. M., Martins, J. A. M., Viana, A. G. A., Viana Neto, A. M., RĂȘgo, J. P. A., 
 Moura, A. A. (2019). Major seminal plasma proteome of rabbits and associations with sperm quality. Theriogenology, 128, 156-166. doi:10.1016/j.theriogenology.2019.01.013Brun, J.-M., Theau-ClĂ©ment, M., & Bolet, G. (2002). The relationship between rabbit semen characteristics and reproductive performance after artificial insemination. Animal Reproduction Science, 70(1-2), 139-149. doi:10.1016/s0378-4320(01)00197-xBrun, J.-M., Theau-ClĂ©ment, M., EsparbiĂ©, J., FaliĂšres, J., Saleil, G., & Larzul, C. (2006). Semen production in two rabbit lines divergently selected for 63-d body weight. Theriogenology, 66(9), 2165-2172. doi:10.1016/j.theriogenology.2006.07.004Brun, J. M., Sanchez, A., Ailloud, E., Saleil, G., & Theau-ClĂ©ment, M. (2016). Genetic parameters of rabbit semen traits and male fertilising ability. Animal Reproduction Science, 166, 15-21. doi:10.1016/j.anireprosci.2015.12.008BĂŒnger, L., Lewis, R. M., Rothschild, M. F., Blasco, A., Renne, U., & Simm, G. (2005). Relationships between quantitative and reproductive fitness traits in animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1459), 1489-1502. doi:10.1098/rstb.2005.1679Casares-Crespo, L., FernĂĄndez-Serrano, P., Vicente, J. S., Marco-JimĂ©nez, F., & Viudes-de-Castro, M. P. (2018). Rabbit seminal plasma proteome: The importance of the genetic origin. Animal Reproduction Science, 189, 30-42. doi:10.1016/j.anireprosci.2017.12.004Casares-Crespo, L., FernĂĄndez-Serrano, P., & Viudes-de-Castro, M. P. (2019). Proteomic characterization of rabbit (Oryctolagus cuniculus) sperm from two different genotypes. Theriogenology, 128, 140-148. doi:10.1016/j.theriogenology.2019.01.026Castellini, C., Lattaioli, P., Moroni, M., & Minelli, A. (2000). Effect of seminal plasma on the characteristics and fertility of rabbit spermatozoa. Animal Reproduction Science, 63(3-4), 275-282. doi:10.1016/s0378-4320(00)00181-0Castellini, C., Cardinali, R., Dal Bosco, A., Minelli, A., & Camici, O. (2006). Lipid composition of the main fractions of rabbit semen. Theriogenology, 65(4), 703-712. doi:10.1016/j.theriogenology.2005.05.053Castellini, C., Mourvaki, E., Cardinali, R., Collodel, G., Lasagna, E., Del Vecchio, M. T., & Dal Bosco, A. (2012). Secretion patterns and effect of prostate-derived granules on the sperm acrosome reaction of rabbit buck. Theriogenology, 78(4), 715-723. doi:10.1016/j.theriogenology.2012.02.012Courtens, J., Bolet, G., & Theau-ClĂ©ment, M. (1994). Effect of acrosome defects and sperm chromatin decondensation on fertility and litter size in the rabbit. Preliminary electron-microscopic study. Reproduction Nutrition Development, 34(5), 427-437. doi:10.1051/rnd:19940504Choucair, F., 2018. Unraveling the sperm transcriptome by nextgeneration sequencing and the global epigenetic and landscape in infertile men. Molecular Biology.UniversitĂ© CĂŽted’ Azur; UniversitĂ© libanaise, NNT:2018AZUR4058. https://tel.archives-ouvertes.fr/tel-01958881.Davis, B. K., & Davis, N. V. (1983). Binding by glycoproteins of seminal plasma membrane vesicles accelerates decapacitation in rabbit spermatozoa. Biochimica et Biophysica Acta (BBA) - Biomembranes, 727(1), 70-76. doi:10.1016/0005-2736(83)90370-xEllerman, D. A., Myles, D. G., & Primakoff, P. (2006). A Role for Sperm Surface Protein Disulfide Isomerase Activity in Gamete Fusion: Evidence for the Participation of ERp57. Developmental Cell, 10(6), 831-837. doi:10.1016/j.devcel.2006.03.011Estany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527GarcĂ­a-TomĂĄs, M., SĂĄnchez, J., Rafel, O., Ramon, J., & Piles, M. (2006). Variability, repeatability and phenotypic relationships of several characteristics of production and semen quality in rabbit. Animal Reproduction Science, 93(1-2), 88-100. doi:10.1016/j.anireprosci.2005.06.011GarcĂ­a-TomĂĄs, M., SĂĄnchez, J., Rafel, O., Ramon, J., & Piles, M. (2006). Heterosis, direct and maternal genetic effects on semen quality traits of rabbits. Livestock Science, 100(2-3), 111-120. doi:10.1016/j.livprodsci.2005.08.004GarĂ©naux, E., Kanagawa, M., Tsuchiyama, T., Hori, K., Kanazawa, T., Goshima, A., 
 Kitajima, K. (2015). Discovery, Primary, and Crystal Structures and Capacitation-related Properties of a Prostate-derived Heparin-binding Protein WGA16 from Boar Sperm. Journal of Biological Chemistry, 290(9), 5484-5501. doi:10.1074/jbc.m114.635268Gerena, R. L., Irikura, D., Urade, Y., Eguchi, N., Chapman, D. A., & Killian, G. J. (1998). Identification of a Fertility-Associated Protein in Bull Seminal Plasma As Lipocalin-Type Prostaglandin D Synthase1. Biology of Reproduction, 58(3), 826-833. doi:10.1095/biolreprod58.3.826Gervasi, M. G., & Visconti, P. E. (2017). Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology, 5(2), 204-218. doi:10.1111/andr.12320Jeyendran, R. S., Van der Ven, H. H., Perez-Pelaez, M., Crabo, B. G., & Zaneveld, L. J. D. (1984). Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. Reproduction, 70(1), 219-228. doi:10.1530/jrf.0.0700219Kim, T. S., Heinlein, C., Hackman, R. C., & Nelson, P. S. (2006). Phenotypic Analysis of Mice Lacking the Tmprss2 -Encoded Protease. Molecular and Cellular Biology, 26(3), 965-975. doi:10.1128/mcb.26.3.965-975.2006Kwon, J. T., Ham, S., Jeon, S., Kim, Y., Oh, S., & Cho, C. (2017). Expression of uncharacterized male germ cell-specific genes and discovery of novel sperm-tail proteins in mice. PLOS ONE, 12(7), e0182038. doi:10.1371/journal.pone.0182038Larzul, C., Gondret, F., Combes, S., & de Rochambeau, H. (2005). Divergent selection on 63-day body weight in the rabbit: response on growth, carcass and muscle traits. Genetics Selection Evolution, 37(1), 105. doi:10.1186/1297-9686-37-1-105Lavara, R., MocĂ©, E., Lavara, F., Viudes de Castro, M. P., & Vicente, J. S. (2005). Do parameters of seminal quality correlate with the results of on-farm inseminations in rabbits? Theriogenology, 64(5), 1130-1141. doi:10.1016/j.theriogenology.2005.01.009Lavara, R., Vicente, J. S., & Baselga, M. (2010). Genetic parameter estimates for semen production traits and growth rate of a paternal rabbit line. Journal of Animal Breeding and Genetics, 128(1), 44-51. doi:10.1111/j.1439-0388.2010.00889.xLavara, R., Vicente, J. S., & Baselga, M. (2012). Estimation of genetic parameters for semen quality traits and growth rate in a paternal rabbit line. Theriogenology, 78(3), 567-575. doi:10.1016/j.theriogenology.2012.03.002Lavara, R., Vicente, J. S., & Baselga, M. (2013). Genetic variation in head morphometry of rabbit sperm. Theriogenology, 80(4), 313-318. doi:10.1016/j.theriogenology.2013.04.015Law, R. H., Zhang, Q., McGowan, S., Buckle, A. M., Silverman, G. A., Wong, W., 
 Whisstock, J. C. (2006). Genome Biology, 7(5), 216. doi:10.1186/gb-2006-7-5-216Leone, M. G., Haq, H. A., & Saso, L. (2002). Lipocalin type prostaglandin D-synthase: which role in male fertility? Contraception, 65(4), 293-295. doi:10.1016/s0010-7824(02)00280-9Lestari, S. W., Miati, D. N., Seoharso, P., Sugiyanto, R., & Pujianto, D. A. (2017). Sperm Na+, K+-ATPase α4 and plasma membrane Ca2+-ATPase (PMCA) 4 regulation in asthenozoospermia. Systems Biology in Reproductive Medicine, 63(5), 294-302. doi:10.1080/19396368.2017.1348565Liao, T.-T., Xiang, Z., Zhu, W.-B., & Fan, L.-Q. (2009). Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian Journal of Andrology, 11(6), 683-693. doi:10.1038/aja.2009.59Llobat, L., Marco-JimĂ©nez, F., Peñaranda, D., Thieme, R., Navarrete, A., & Vicente, J. (2011). mRNA Expression in Rabbit Blastocyst and Endometrial Tissue of Candidate Gene Involved in Gestational Losses. Reproduction in Domestic Animals, 47(2), 281-287. doi:10.1111/j.1439-0531.2011.01855.xLoveland, K., Major, A., Butler, R., Jans, D., Miyamoto, Y., & Young, J. (2015). Putting things in place for fertilization: discovering roles for importin proteins in cell fate and spermatogenesis. Asian Journal of Andrology, 17(4), 537. doi:10.4103/1008-682x.154310Lukefahr, S. D., Odi, H. B., & Atakora, J. K. (1996). Mass selection for 70-day body weight in rabbits. Journal of Animal Science, 74(7), 1481. doi:10.2527/1996.7471481xMa, Q., Li, Y., Luo, M., Guo, H., Lin, S., Chen, J., 
 Gui, Y. (2017). The expression characteristics of FAM71D and its association with sperm motility. Human Reproduction, 32(11), 2178-2187. doi:10.1093/humrep/dex290Marai, I. F. ., Habeeb, A. A. ., & Gad, A. . (2002). Rabbits’ productive, reproductive and physiological performance traits as affected by heat stress: a review. Livestock Production Science, 78(2), 71-90. doi:10.1016/s0301-6226(02)00091-xMocĂ©, E., Vicente, J. S., & Lavara, R. (2003). Effect of freezing–thawing protocols on the performance of semen from three rabbit lines after artificial insemination. Theriogenology, 60(1), 115-123. doi:10.1016/s0093-691x(02)01329-8Naturil-Alfonso, C., Lavara, R., MillĂĄn, P., Rebollar, P. G., Vicente, J. S., & Marco-JimĂ©nez, F. (2016). Study of failures in a rabbit line selected for growth rate. World Rabbit Science, 24(1), 47. doi:10.4995/wrs.2016.4016Nizza, A., Di Meo, C., & Taranto, S. (2003). Effect of Collection Rhythms and Season on Rabbit Semen Production. Reproduction in Domestic Animals, 38(6), 436-439. doi:10.1046/j.1439-0531.2003.00458.xOsada, T., Watanabe, G., Kondo, S., Toyoda, M., Sakaki, Y., & Takeuchi, T. (2001). Male Reproductive Defects Caused by Puromycin-Sensitive Aminopeptidase Deficiency in Mice. Molecular Endocrinology, 15(6), 960-971. doi:10.1210/mend.15.6.0643Pascual, J. J., GarcĂ­a, C., MartĂ­nez, E., MocĂ©, E., & Vicente, J. S. (2004). Rearing management of rabbit males selected by high growth rate: the effect of diet and season on semen characteristics. Reproduction Nutrition Development, 44(1), 49-63. doi:10.1051/rnd:2004016Pascual, J. J., Marco-JimĂ©nez, F., MartĂ­nez-Paredes, E., RĂłdenas, L., Fabre, C., Juvero, M. A., & Cano, J. L. (2016). Feeding programs promoting daily feed intake stability in rabbit males reduce sperm abnormalities and improve fertility. Theriogenology, 86(3), 730-737. doi:10.1016/j.theriogenology.2016.02.026PĂ©rez-Patiño, C., Parrilla, I., Li, J., Barranco, I., MartĂ­nez, E. A., Rodriguez-MartĂ­nez, H., & Roca, J. (2019). The Proteome of Pig Spermatozoa Is Remodeled During Ejaculation. Molecular & Cellular Proteomics, 18(1), 41-50. doi:10.1074/mcp.ra118.000840Peralta-Arias, R. D., VĂ­venes, C. Y., Camejo, M. I., Piñero, S., Proverbio, T., MartĂ­nez, E., 
 Proverbio, F. (2015). ATPases, ion exchangers and human sperm motility. REPRODUCTION, 149(5), 475-484. doi:10.1530/rep-14-0471Piles, M., & Tusell, L. (2011). Genetic correlation between growth and female and male contributions to fertility in rabbit. Journal of Animal Breeding and Genetics, 129(4), 298-305. doi:10.1111/j.1439-0388.2011.00975.xPiles, M., MocĂ©, M. L., Laborda, P., & Santacreu, M. A. (2013). Feasibility of selection for male contribution to embryo survival as a way of improving male reproductive performance and semen quality in rabbits1. Journal of Animal Science, 91(10), 4654-4658. doi:10.2527/jas.2013-6446Rahman, M. S., Kwon, W.-S., & Pang, M.-G. (2017). Prediction of male fertility using capacitation-associated proteins in spermatozoa. Molecular Reproduction and Development, 84(9), 749-759. doi:10.1002/mrd.22810Roca, J., MartĂ­nez, S., Orengo, J., Parrilla, I., VĂĄzquez, J. M., & MartĂ­nez, E. A. (2005). Influence of constant long days on ejaculate parameters of rabbits reared under natural environment conditions of Mediterranean area. Livestock Production Science, 94(3), 169-177. doi:10.1016/j.livprodsci.2004.10.011De Rochambeau, H., de la Fuente, L., Rouvier, R., & Ouhayoun, J. (1989). SĂ©lection sur la vitesse de croissance post-sevrage chez le lapin. Genetics Selection Evolution, 21(4), 527. doi:10.1186/1297-9686-21-4-527Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., 
 Quackenbush, J. (2003). TM4: A Free, Open-Source System for Microarray Data Management and Analysis. BioTechniques, 34(2), 374-378. doi:10.2144/03342mt01Samanta, L., Parida, R., Dias, T. R., & Agarwal, A. (2018). The enigmatic seminal plasma: a proteomics insight from ejaculation to fertilization. Reproductive Biology and Endocrinology, 16(1). doi:10.1186/s12958-018-0358-6SabĂ©s-Alsina, M., Planell, N., Torres-Mejia, E., Taberner, E., Maya-Soriano, M. J., Tusell, L., 
 Lopez-Bejar, M. (2015). Daily exposure to summer circadian cycles affects spermatogenesis, but not fertility in an in vivo rabbit model. Theriogenology, 83(2), 246-252. doi:10.1016/j.theriogenology.2014.09.013Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F., Wilm, M., Vorm, O., 
 Mann, M. (1996). Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels. Proceedings of the National Academy of Sciences, 93(25), 14440-14445. doi:10.1073/pnas.93.25.14440Shilov, I. V., Seymour, S. L., Patel, A. A., Loboda, A., Tang, W. H., Keating, S. P., 
 Schaeffer, D. A. (2007). The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra. Molecular & Cellular Proteomics, 6(9), 1638-1655. doi:10.1074/mcp.t600050-mcp200Theau-ClĂ©ment, M., Bolet, G., Sanchez, A., Saleil, G., & Brun, J. M. (2015). Some factors that influence semen characteristics in rabbits. Animal Reproduction Science, 157, 33-38. doi:10.1016/j.anireprosci.2015.03.011Thundathil, J. C., Rajamanickam, G. D., & Kastelic, J. P. (2018). Na/K-ATPase and Regulation of Sperm Function. Animal Reproduction, 15(Suppl. 1), 711-720. doi:10.21451/1984-3143-ar2018-0024Tusell, L., Legarra, A., GarcĂ­a-TomĂĄs, M., Rafel, O., Ramon, J., & Piles, M. (2012). Genetic basis of semen traits and their relationship with growth rate in rabbits1. Journal of Animal Science, 90(5), 1385-1397. doi:10.2527/jas.2011-4165Vicente, J. (2004). Study of fertilising capacity of spermatozoa after heterospermic insemination in rabbit using DNA markers. Theriogenology, 61(7-8), 1357-1365. doi:10.1016/j.theriogenology.2003.08.009Vicente, J. S., Llobat, L., Viudes-de-Castro, M. P., Lavara, R., Baselga, M., & Marco-JimĂ©nez, F. (2012). Gestational losses in a rabbit line selected for growth rate. Theriogenology, 77(1), 81-88. doi:10.1016/j.theriogenology.2011.07.019Viudes-de-Castro, M. P., & Vicente, J. S. (1997). Effect of sperm count on the fertility and prolificity rates of meat rabbits. Animal Reproduction Science, 46(3-4), 313-319. doi:10.1016/s0378-4320(96)01628-4Viudes-de-Castro, M. P., MocĂ©, E., Lavara, R., Marco-JimĂ©nez, F., & Vicente, J. S. (2014). Aminopeptidase activity in seminal plasma and effect of dilution rate on rabbit reproductive performance after insemination with an extender supplemented with buserelin acetate. Theriogenology, 81(9), 1223-1228. doi:10.1016/j.theriogenology.2014.02.003Viudes de Castro, M. P., Casares-Crespo, L., Monserrat-MartĂ­nez, A., & Vicente, J. S. (2015). Determination of enzyme activity in rabbit seminal plasma and its relationship with quality semen parameters. World Rabbit Science, 23(4), 247. doi:10.4995/wrs.2015.4064VizcaĂ­no, J. A., Deutsch, E. W., Wang, R., Csordas, A., Reisinger, F., RĂ­os, D., 
 Hermjakob, H. (2014). ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nature Biotechnology, 32(3), 223-226. doi:10.1038/nbt.2839Wandernoth, P. M., Mannowetz, N., Szczyrba, J., Grannemann, L., Wolf, A., Becker, H. M., 
 Wennemuth, G. (2015). Normal Fertility Requires the Expression of Carbonic Anhydrases II and IV in Sperm. Journal of Biological Chemistry, 290(49), 29202-29216. doi:10.1074/jbc.m115.698597Weininger, R. B., Fisher, S., Rifkin, J., & Bedford, J. M. (1982). Experimental studies on the passage of specific IgG to the lumen of the rabbit epididymis. Reproduction, 66(1), 251-258. doi:10.1530/jrf.0.0660251Yan, M., Zhang, X., Pu, Q., Huang, T., Xie, Q., Wang, Y., 
 Gu, J. (2016). Immunoglobulin G Expression in Human Sperm and Possible Functional Significance. Scientific Reports, 6(1). doi:10.1038/srep2016

    AdiciĂłn de anĂĄlogos de antioxidantes presentes en el plasma seminal al medio de congelaciĂłn de semen de conejo

    Get PDF
    En el plasma seminal, para mantener una funciĂłn espermĂĄtica Ăłptima, coexisten en equilibrio tanto especies reactivas al oxĂ­geno (ERO) como antioxidantes. No obstante, durante la congelaciĂłn del semen, la excesiva generaciĂłn de ERO puede provocar un desequilibrio del mecanismo de protecciĂłn y alterar los lĂ­pidos y/o proteĂ­nas de las membranas de los espermatozoides (Sanocka y Kurpisz, 2004). La utilizaciĂłn de antioxidantes en los medios de congelaciĂłn puede prevenir el estrĂ©s oxidativo y mejorar las caracterĂ­sticas seminales (Nishijima et al. 2021). Entre los principales antioxidantes presentes en el semen podemos encontrar la enzima superĂłxido dismutasa (SOD) y la vitamina E (Kowalczyk, 2022). La SOD previene la formaciĂłn de nuevos radicales libres, mientras que la vitamina E actĂșa capturando los radicales libres que se forman para evitar las reacciones en cadena posteriores El objetivo del presente trabajo es evaluar el efecto de la adiciĂłn de anĂĄlogos sintĂ©ticos de la vitamina E y la SOD en el medio de congelaciĂłn de semen de conejo, analizando diferentes parĂĄmetros seminales in vitro y su capacidad fecundante in vivo

    Embrapa Mais AmazÎnia: comunicação em rede para a pesquisa agropecuåria e florestal no Brasil amazÎnico.

    Get PDF
    "Embrapa Mais AmazĂŽnia" Ă© um projeto de comunicação executado em rede pelos profissionais das nove Unidades da Empresa Brasileira de Pesquisa AgropecuĂĄria (Embrapa) na AmazĂŽnia Legal. O objetivo Ă© divulgar resultados da pesquisa e estimular junto Ă  sociedade o debate em torno da floresta, uso sustentĂĄvel dos recursos naturais e questĂ”es ambientais na regiĂŁo. O projeto atua em trĂȘs vertentes: desenvolvimento de produtos de comunicação; ampliação dos fluxos de informação e canais de diĂĄlogo; e capacitação de cientistas das ĂĄreas florestal e agropecuĂĄria e de profissionais de comunicação. Entre os principais resultados estĂŁo: cursos para comunicadores sobre temĂĄticas florestais; cursos de fotografia para pesquisadores; media trainings para pesquisadores; e desenvolvimento de folders e aplicativo sobre as principais fontes de informação tĂ©cnico-cientĂ­ficas sobre as temĂĄticas florestais e agropecuĂĄrias trabalhadas pela Embrapa na regiĂŁo. Ao final do projeto foi realizada pesquisa de imagem para aferir o impacto das açÔes a respeito da ampliação do debate sobre as questĂ”es ambientais na regiĂŁo, bem como as referĂȘncias (instituiçÔes) dos jornalistas quando o assunto Ă© pesquisa florestal e agropecuĂĄria na AmazĂŽnia. Verificou-se que as temĂĄticas ambientais na AmazĂŽnia ganham amplitude junto Ă  imprensa quando sĂŁo realizadas as conferĂȘncias internacionais sobre clima e mudanças climĂĄticas e/ou grandes eventos no tema. Entre as instituiçÔes citadas como referĂȘncia na temĂĄtica "mudanças climĂĄticas", ONGs aparecem em primeiro lugar, seguidas de perto pelas universidades; na temĂĄtica ?pesquisa florestal? e ?pesquisa agropecuĂĄria?, Embrapa ocupa a primeira posição; e na temĂĄtica ?uso sustentĂĄvel dos recursos naturais?, instituiçÔes de ensino aparecem primeiro.TĂ­tulo equivalente: Embrapa Mais AmazĂŽnia: a communication network for agricultural and forest research in the Brazilian Amazon. Na publicação: Ana Laura Lima, Vinicius Kuromoto, DulcivĂąnia Freitas. Special issue. Abstracts of the XXV IUFRO World Congress, 2019, Curitiba

    OrientaçÔes e dinùmicas para as oficinas do Projeto Amazocom: cardåpio de ferramentas.

    Get PDF
    Esses projetos tĂȘm o objetivo de promover a produção e a apropriação, por parte de ribeirinhos, extrativistas, agricultores familiares, povos indĂ­genas de conhecimentos e tecnologias voltados para recuperar, conservar e promover o uso sustentĂĄvel dos recursos naturais nos nove estados da AmazĂŽnia Legal.bitstream/item/210361/1/26946.pdfMaterial gerado na oficina de alinhamento do Projeto Amazocom, realizada em BelĂ©m, PA, no perĂ­odo de 4 a 6 de setembro de 2018

    Hsp90 governs dispersion and drug resistance of fungal biofilms

    Get PDF
    Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections

    Extra-uterine (abdominal) full term foetus in a 15-day pregnant rabbit

    Full text link
    [EN] Background: While ectopic pregnancies account for 1-2% of all pregnancies, abdominal pregnancy is extremely rare, accounting for approximately 1% of ectopic pregnancies. Extrauterine abdominal pregnancy is defined as the implantation and development of an embryo in the peritoneal cavity. The present report is the first of an incidental case of abdominal pregnancy within four full-term foetus simultaneously with 2 weeks of physiological gestation in a healthy doe rabbit. Case presentation: The doe was born on November 3, 2014 and the first partum took place on May 18, 2015. The doe had previously delivered and weaned an average of 12.0 +/- 1.41 live kits at birth (no stillbirths were recorded) during 5 consecutive pregnancies. The last mating was on December 18, 2015 and the detection of pregnancy failure post breeding (by abdominal palpation) on December 31, 2015. Then, the doe was artificially inseminated on January 27, 2016, diagnosed pregnant on February 11, 2016 and subsequently euthanized to recover the foetus. A ventral midline incision revealed a reproductive tract with 12 implantation sites with 15 days old foetus and 4 term foetus in abdominal cavity. There were two foetus floating on either side of the abdominal cavity and two suspended near the greater curvature of the stomach. They were attached to internal organs by means of one or 2 thread-like blood vessels that linked them to the abdominal surfaces. Conclusions: In our opinion a systematic monitoring of rabbit breeding should be included to fully understand and enhance current knowledge of this phenomenon of abdominal pregnancy.This work was supported by Spanish Research Project AGL2014-53405-C2-1-P (Interministerial Commission on Science and Technology).Marco-JimĂ©nez, F.; Garcia-Dominguez, X.; Valdes-HernĂĄndez, J.; Vicente AntĂłn, JS. (2017). Extra-uterine (abdominal) full term foetus in a 15-day pregnant rabbit. BMC Veterinary Research. 13:1-4. https://doi.org/10.1186/s12917-017-1229-7S1413Petracci M, Bianchi M, Cavani C. Development of rabbit meat products fortified with n-3 polyunsaturated fatty acids. Nutrients. 2009;1:111–8.FAOSTAT (Food and Agriculture Organization of the United Nations, authors). Available online: http://faostat.fao.org/site/569/DesktopDefault.aspx?PageID=569#ancor . Accessed Sept 2012.Segura Gil P, Peris Palau B, MartĂ­nez MartĂ­nez J, Ortega Porcel J, Corpa Arenas JM. Abdominal pregnancies in farm rabbits. Theriogenology. 2004;62:642–51.Rosell JM, de la Fuente LF. Culling and mortality in breeding rabbits. Prev Vet Med. 2009;88:120–7.Tena-Betancourt E, Tena-Betancourt CA, ZĂșniga-Muñoz AM, HernĂĄndez-GodĂ­nez B, Ibåñez-Contreras A, Graullera-Rivera V. Multiple extrauterine pregnancy with early and near full-term mummified foetuses in a New Zealand white rabbit (Oryctolagus Cuniculus). J Am Assoc Lab Anim Sci. 2014;53:204–7.SĂĄnchez JP, Theilgaard P, MĂ­nguez C, Baselga M. Constitution and evaluation of a long-lived productive rabbit line. J Anim Sci. 2008;86:515–25.Savietto D, Friggens NC, Pascual JJ. Reproductive robustness differs between generalist and specialist maternal rabbit lines: the role of acquisition and allocation of resources. Genet Sel Evol. 2015;47:2.Viudes-de-Castro MP, Vicente JS. Effect of sperm count on the fertility and prolificity rates of meat rabbits. Anim Reprod Sci. 1997;46:313–9.Marco-JimĂ©nez F, Garcia-Dominguez X, Jimenez-Trigos E, Vera-Donoso CD, Vicente JS. Vitrification of kidney precursors as a new source for organ transplantation. Cryobiology. 2015;70:278–82.Garcia-Dominguez X, Vera-Donoso CD, Jimenez-Trigos E, Vicente JS, Marco-Jimenez. First steps towards organ banks: vitrification of renal primordial. Cryo Letters. 2016;37:47–52.Arvidsson A. Extra-uterine pregnancy in a rabbit. Vet Rec. 1998;142:176.GliĆĄić A, Radunović N, Atanacković J. Methotrexate and fallopian tubes in ectopic pregnancy. Acta veterinaria. 2006;56:375–82.Nwobodo EI. Abdominal pregnancy. A case report. Ann Afr Med. 2004;3:195–6.Nassali MN, Benti TM, Bandani-Ntsabele M, Musinguzi E. A case report of an asymptomatic late term abdominal pregnancy with a live birth at 41 weeks of gestation. BMC Res Notes. 2016;9:31.Baffoe P, Fofie C, Gandau BN. Term abdominal pregnancy with healthy new-born: a case report. Ghana Med J. 2011;45:81–3.Eleje GU, Adewae O, Osuagwu IK, Obianika CE. Post-date extra-uterine abdominal pregnancy in a rhesus negative Nullipara with successful outcome: a case report. J Women's Health. 2013;6:2.Hong CC, Armstrong ML. Ectopic pregnancy in 2 guinea-pigs. Lab Anim. 1978;12:243–4.Peters LJ. Abdominal pregnancy in a golden hamster (Mesocricetus Auratus). Lab Anim Sci. 1982;32:392–3.Xiccato G, Trocino A, Boiti C, Brecchia G. Reproductive rhythm and litter weaning age as they affect rabbit doe performance and body energy balance. Anim Sci. 2005;81:289–96.Fortun-Lamothe L, De Rochambeau H, Lebas F, Tudela F. Influence of the number of suckling young on reproductive performance in intensively reared rabbits does. In: Blasco A, editor. Proceedings of the 7th world rabbit congress; 2002. p. 125–32

    Validation of the Tetracycline Regulatable Gene Expression System for the Study of the Pathogenesis of Infectious Disease

    Get PDF
    Understanding the pathogenesis of infectious disease requires the examination and successful integration of parameters related to both microbial virulence and host responses. As a practical and powerful method to control microbial gene expression, including in vivo, the tetracycline-regulatable system has recently gained the favor of many investigative groups. However, some immunomodulatory effects of the tetracyclines, including doxycycline, could potentially limit its use to evaluate host responses during infection. Here we have used a well-established murine model of disseminated candidiasis, which is highly dependent on both the virulence displayed by the fungal cells and on the host immune status, to validate the use of this system. We demonstrate that the pathogenesis of the wild type C. albicans CAF2-1 strain, which does not contain any tet-regulatable element, is not affected by the presence of doxycycline. Moreover levels of key cytokines, chemokines and many other biomarkers, as determined by multi-analyte profiling, remain essentially unaltered by the presence of the antibiotic during infection. Our results indicate that the levels of doxycycline needed to control the tetracycline regulatable promoter gene expression system have no detectable effect on global host responses during candidiasis. Because tet-regulatable systems are now being increasingly used in a variety of pathogenic microorganisms, these observations have wide implications in the field of infectious diseases

    Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle

    Get PDF
    Biofilms are dynamic microbial communities in which transitions between planktonic and sessile modes of growth occur interchangeably in response to different environmental cues. In the last decade, early events associated with C. albicans biofilm formation have received considerable attention. However, very little is known about C. albicans biofilm dispersion or the mechanisms and signals that trigger it. This is important because it is precisely C. albicans cells dispersed from biofilms that are the main culprits associated with candidemia and establishment of disseminated invasive disease, two of the gravest forms of candidiasis. Using a simple flow biofilm model recently developed by our group, we have performed initial investigations into the phenomenon of C. albicans biofilm dispersion, as well as the phenotypic characteristics associated with dispersed cells. Our results indicate that C. albicans biofilm dispersion is dependent on growing conditions, including carbon source and pH of the media used for biofilm development. C. albicans dispersed cells are mostly in the yeast form and display distinct phenotypic properties compared to their planktonic counterparts, including enhanced adherence, filamentation, biofilm formation and, perhaps most importantly, increased pathogenicity in a murine model of hematogenously disseminated candidiasis, thus indicating that dispersed cells are armed with a complete arsenal of “virulence factors” important for seeding and establishing new foci of infection. In addition, utilizing genetically engineered strains of C. albicans (tetO-UME6 and tetO-PES1) we demonstrate that C. albicans biofilm dispersion can be regulated by manipulating levels of expression of these key genes, further supporting the evidence for a strong link between biofilms and morphogenetic conversions at different stages of the C. albicans biofilm developmental cycle. Overall, our results offer novel and important insight into the phenomenon of C. albicans biofilm dispersion, a key part of the biofilm developmental cycle, and provide the basis for its more detailed analysis
    corecore