46 research outputs found
A Metachronous splenic metastases from esophageal cancer: a case report
The spleen is an infrequent site for metastatic lesions, and solitary splenic metastases from squamous cell carcinoma of the esophagus are very rare: only 4 cases have been reported thus far. These lesions are whitish nodules that are macroscopically and radiologically similar to primary splenic lymphomas. We report a case of metachronous splenic metastases from esophageal cancer and multiple splenic abscesses, which developed nine months after apparently curative esophagectomy without adjuvant chemotherapy. The patient underwent splenectomy dissection followed by adjuvant chemotherapy, but liver and skin metastases developed, and the patient died 9 months later
Mortality in Peripheral Arterial Disease: A Comparison of Patients Managed by Vascular Specialists and General Practitioners
BACKGROUND: Peripheral arterial disease (PAD) is undertreated by general practitioners (GPs). However, the impact of the suboptimal clinical management is unknown. OBJECTIVE: To assess the mortality rate of PAD patients in relation to the type of physician who provides their care (GP or vascular specialist). DESIGN: Prospective study. SETTING: Primary care practice and academic vascular laboratory. PARTICIPANTS: GP patients (n = 60) were those of the Peripheral Arteriopathy and Cardiovascular Events study (PACE). Patients managed by specialists (n = 82) were consecutive subjects with established PAD who were referred to our vascular laboratory during the enrolment period of the PACE study. MEASUREMENTS: All-cause and cardiovascular mortality. RESULTS: After 32 months of follow-up, specialist management was associated with a lower rate of all-cause mortality (RR = 0.04; 95% CI 0.01–0.34; p = .003) and cardiovascular mortality (RR = 0.07; 95% CI 0.01–0.65; p = .020), after adjustment for patients’ characteristics. Specialists were more likely to use antiplatelet agents (93% vs 73%, p < .001), statins (62% vs 25%, p < .001) and beta blockers (28% vs 3%, p < .001). Survival differences between specialists and GPs disappeared once the use of pharmacotherapies was added to the proportional hazard model. The fully adjusted model showed that the use of statins was significantly associated with a reduced risk of all-cause mortality (RR = 0.02; 95% CI 0.01–0.73, p = .034) and cardiovascular mortality (RR = 0.02; 95% CI 0.01–0.71, p = .033). CONCLUSIONS: Specialist management of patients with symptomatic PAD resulted in better survival than generalist management. This effect appears to be mainly caused by the more frequent use of effective medicines by specialists
Behavior Discovery and Alignment of Articulated Object Classes from Unstructured Video
We propose an automatic system for organizing the content of a collection of
unstructured videos of an articulated object class (e.g. tiger, horse). By
exploiting the recurring motion patterns of the class across videos, our
system: 1) identifies its characteristic behaviors; and 2) recovers
pixel-to-pixel alignments across different instances. Our system can be useful
for organizing video collections for indexing and retrieval. Moreover, it can
be a platform for learning the appearance or behaviors of object classes from
Internet video. Traditional supervised techniques cannot exploit this wealth of
data directly, as they require a large amount of time-consuming manual
annotations.
The behavior discovery stage generates temporal video intervals, each
automatically trimmed to one instance of the discovered behavior, clustered by
type. It relies on our novel motion representation for articulated motion based
on the displacement of ordered pairs of trajectories (PoTs). The alignment
stage aligns hundreds of instances of the class to a great accuracy despite
considerable appearance variations (e.g. an adult tiger and a cub). It uses a
flexible Thin Plate Spline deformation model that can vary through time. We
carefully evaluate each step of our system on a new, fully annotated dataset.
On behavior discovery, we outperform the state-of-the-art Improved DTF
descriptor. On spatial alignment, we outperform the popular SIFT Flow
algorithm.Comment: 19 pages, 19 figure, 3 tables. arXiv admin note: substantial text
overlap with arXiv:1411.788
Predictors of poor retention on antiretroviral therapy as a major HIV drug resistance early warning indicator in Cameroon: results from a nationwide systematic random sampling
Retention on lifelong antiretroviral therapy (ART) is essential in sustaining treatment success while preventing HIV drug resistance (HIVDR), especially in resource-limited settings (RLS). In an era of rising numbers of patients on ART, mastering patients in care is becoming more strategic for programmatic interventions. Due to lapses and uncertainty with the current WHO sampling approach in Cameroon, we thus aimed to ascertain the national performance of, and determinants in, retention on ART at 12 months
Dietary patterns and breast cancer risk: results from three cohort studies in the DIETSCAN project
OBJECTIVE: Only a few consistent findings on individual foods or nutrients that influence breast cancer risk have emerged thus far. Since people do not consume individual foods but certain combinations of them, the analysis of dietary patterns may offer an additional aspect for assessing associations between diet and diseases such as breast cancer. It is also important to examine whether the relationships between dietary patterns and breast cancer risk are consistent across populations. METHODS: We examined the risk of breast cancer with two dietary patterns, identified as "Vegetables" (VEG) and "Pork, Processed Meat, Potatoes" (PPP), common to all cohorts of the DIETSCAN project. During 7 to 13 years of follow-up, three of the cohorts--the Netherlands Cohort Study on diet and cancer (NLCS), the Swedish Mammography Cohort (SMC), and the Ormoni e Dieta nella Eziologia dei Tumori (Italy-ORDET)--provided data on 3271 breast cancer cases with complete information on their baseline diet measured by a validated food frequency questionnaire. RESULTS: After adjustment for potential confounders, VEG was not associated with the risk of breast cancer across all cohorts. PPP was also not associated with the risk of breast cancer in SMC and ORDET, but a high PPP score tended to be inversely associated with breast cancer in the NLCS study (RR = 0.69; 95% CI, 0.52-0.92, highest versus lowest quartile). PPP differed in one aspect between the cohorts: butter loaded positively on the pattern in all cohorts except NLCS, in which butter loaded negatively and appeared to be substituted by low-fat margarine loading positively. CONCLUSION: In general, the dietary patterns showed consistent results across the three cohorts except for the possible protective effect of PPP in the NLCS cohort, which could be explained by a difference in that pattern for NLCS. The results supported the suggestion derived from traditional epidemiology that relatively recent diet may not have an important role in the etiology of breast cancer
Development and validation of a weather-based model for predicting infection of loquat fruit by Fusicladium eriobotryae
A mechanistic, dynamic model was developed to predict infection of loquat fruit by conidia of Fusicladium eriobotryae, the
causal agent of loquat scab. The model simulates scab infection periods and their severity through the sub-processes of
spore dispersal, infection, and latency (i.e., the state variables); change from one state to the following one depends on
environmental conditions and on processes described by mathematical equations. Equations were developed using
published data on F. eriobotryae mycelium growth, conidial germination, infection, and conidial dispersion pattern. The
model was then validated by comparing model output with three independent data sets. The model accurately predicts the
occurrence and severity of infection periods as well as the progress of loquat scab incidence on fruit (with concordance
correlation coefficients .0.95). Model output agreed with expert assessment of the disease severity in seven loquatgrowing
seasons. Use of the model for scheduling fungicide applications in loquat orchards may help optimise scab
management and reduce fungicide applications.This work was funded by Cooperativa Agricola de Callosa d'En Sarria (Alicante, Spain). Three months' stay of E. Gonzalez-Dominguez at the Universita Cattolica del Sacro Cuore (Piacenza, Italy) was supported by the Programa de Apoyo a la Investigacion y Desarrollo (PAID-00-12) de la Universidad Politecnica de Valencia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.González Domínguez, E.; Armengol Fortí, J.; Rossi, V. (2014). Development and validation of a weather-based model for predicting infection of loquat fruit by Fusicladium eriobotryae. PLoS ONE. 9(9):1-12. https://doi.org/10.1371/journal.pone.0107547S11299Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2009). Characterization and Pathogenicity ofFusicladium eriobotryae, the Fungal Pathogen Responsible for Loquat Scab. Plant Disease, 93(11), 1151-1157. doi:10.1094/pdis-93-11-1151Gladieux, P., Caffier, V., Devaux, M., & Le Cam, B. (2010). Host-specific differentiation among populations of Venturia inaequalis causing scab on apple, pyracantha and loquat. Fungal Genetics and Biology, 47(6), 511-521. doi:10.1016/j.fgb.2009.12.007González-Domínguez, E., Rossi, V., Armengol, J., & García-Jiménez, J. (2013). Effect of Environmental Factors on Mycelial Growth and Conidial Germination ofFusicladium eriobotryae, and the Infection of Loquat Leaves. Plant Disease, 97(10), 1331-1338. doi:10.1094/pdis-02-13-0131-reGonzález-Domínguez, E., Rossi, V., Michereff, S. J., García-Jiménez, J., & Armengol, J. (2014). Dispersal of conidia of Fusicladium eriobotryae and spatial patterns of scab in loquat orchards in Spain. European Journal of Plant Pathology, 139(4), 849-861. doi:10.1007/s10658-014-0439-0Becker, C. M. (1994). Discontinuous Wetting and Survival of Conidia ofVenturia inaequalison Apple Leaves. Phytopathology, 84(4), 372. doi:10.1094/phyto-84-372Hartman, J. R., Parisi, L., & Bautrais, P. (1999). Effect of Leaf Wetness Duration, Temperature, and Conidial Inoculum Dose on Apple Scab Infections. Plant Disease, 83(6), 531-534. doi:10.1094/pdis.1999.83.6.531Holb, I. J., Heijne, B., Withagen, J. C. M., & Jeger, M. J. (2004). Dispersal of Venturia inaequalis Ascospores and Disease Gradients from a Defined Inoculum Source. Journal of Phytopathology, 152(11-12), 639-646. doi:10.1111/j.1439-0434.2004.00910.xRossi, V., Giosue, S., & Bugiani, R. (2003). Influence of Air Temperature on the Release of Ascospores of Venturia inaequalis. Journal of Phytopathology, 151(1), 50-58. doi:10.1046/j.1439-0434.2003.00680.xStensvand, A., Gadoury, D. M., Amundsen, T., Semb, L., & Seem, R. C. (1997). Ascospore Release and Infection of Apple Leaves by Conidia and Ascospores ofVenturia inaequalisat Low Temperatures. Phytopathology, 87(10), 1046-1053. doi:10.1094/phyto.1997.87.10.1046Machardy WE (1996) Apple scab. Biology, epidemiology and management. St. Paul: APS Press. 545.James, J. R. (1982). Environmental Factors Influencing Pseudothecial Development and Ascospore Maturation ofVenturia inaequalis. Phytopathology, 72(8), 1073. doi:10.1094/phyto-72-1073Li, B., Zhao, H., Li, B., & Xu, X.-M. (2003). Effects of temperature, relative humidity and duration of wetness period on germination and infection by conidia of the pear scab pathogen (Venturia nashicola). Plant Pathology, 52(5), 546-552. doi:10.1046/j.1365-3059.2003.00887.xLi, B.-H., Xu, X.-M., Li, J.-T., & Li, B.-D. (2005). Effects of temperature and continuous and interrupted wetness on the infection of pear leaves by conidia of Venturia nashicola. Plant Pathology, 54(3), 357-363. doi:10.1111/j.1365-3059.2005.01207.xUMEMOTO, S. (1990). Dispersion of ascospores and conidia of causal fungus of Japanese pear scab, Venturia nashicola. Japanese Journal of Phytopathology, 56(4), 468-473. doi:10.3186/jjphytopath.56.468Rossi, V., Salinari, F., Pattori, E., Giosuè,, S., & Bugiani, R. (2009). Predicting the Dynamics of Ascospore Maturation ofVenturia pirinaBased on Environmental Factors. Phytopathology, 99(4), 453-461. doi:10.1094/phyto-99-4-0453Spotts, R. A. (1991). Effect of Temperature and Wetness on Infection of Pear byVenturia pirinaand the Relationship Between Preharvest Inoculation and Storage Scab. Plant Disease, 75(12), 1204. doi:10.1094/pd-75-1204Spotts, R. A. (1994). Factors Affecting Maturation and Release of Ascospores ofVenturia pirinain Oregon. Phytopathology, 84(3), 260. doi:10.1094/phyto-84-260Villalta, O., Washington, W. S., Rimmington, G. M., & Taylor, P. A. (2000). Australasian Plant Pathology, 29(4), 255. doi:10.1071/ap00048Villalta, O. N., Washington, W. S., Rimmington, G. M., & Taylor, P. A. (2000). Effects of temperature and leaf wetness duration on infection of pear leaves by Venturia pirina. Australian Journal of Agricultural Research, 51(1), 97. doi:10.1071/ar99068Lan, Z., & Scherm, H. (2003). Moisture Sources in Relation to Conidial Dissemination and Infection byCladosporium carpophilumWithin Peach Canopies. Phytopathology, 93(12), 1581-1586. doi:10.1094/phyto.2003.93.12.1581Lawrence, Jr., E. G. (1982). Environmental Effects on the Development and Dissemination ofCladosporium carpophilumon Peach. Phytopathology, 72(7), 773. doi:10.1094/phyto-72-773Gottwald, T. R. (1985). Influence of Temperature, Leaf Wetness Period, Leaf Age, and Spore Concentration on Infection of Pecan Leaves by Conidia ofCladosporium caryigenum. Phytopathology, 75(2), 190. doi:10.1094/phyto-75-190Latham, A. J. (1982). Effects of Some Weather Factors andFusicladium effusumConidium Dispersal on Pecan Scab Occurrence. Phytopathology, 72(10), 1339. doi:10.1094/phyto-72-1339MARZO, L., FRISULLO, S., LOPS, F., & ROSSI, V. (1993). Possible dissemination of Spilocaea oleagina conidia by insects (Ectopsocus briggsi). EPPO Bulletin, 23(3), 389-391. doi:10.1111/j.1365-2338.1993.tb01341.xLOPS, F., FRISULLO, S., & ROSSI, V. (1993). Studies on the spread of the olive scab pathogen, Spilocaea oleagina. EPPO Bulletin, 23(3), 385-387. doi:10.1111/j.1365-2338.1993.tb01340.xObanor, F. O., Walter, M., Jones, E. E., & Jaspers, M. V. (2007). Effect of temperature, relative humidity, leaf wetness and leaf age on Spilocaea oleagina conidium germination on olive leaves. European Journal of Plant Pathology, 120(3), 211-222. doi:10.1007/s10658-007-9209-6Obanor, F. O., Walter, M., Jones, E. E., & Jaspers, M. V. (2010). Effects of temperature, inoculum concentration, leaf age, and continuous and interrupted wetness on infection of olive plants by Spilocaea oleagina. Plant Pathology, 60(2), 190-199. doi:10.1111/j.1365-3059.2010.02370.xViruega, J. R., Moral, J., Roca, L. F., Navarro, N., & Trapero, A. (2013). Spilocaea oleaginain Olive Groves of Southern Spain: Survival, Inoculum Production, and Dispersal. Plant Disease, 97(12), 1549-1556. doi:10.1094/pdis-12-12-1206-reViruega, J. R., Roca, L. F., Moral, J., & Trapero, A. (2011). Factors Affecting Infection and Disease Development on Olive Leaves Inoculated withFusicladium oleagineum. Plant Disease, 95(9), 1139-1146. doi:10.1094/pdis-02-11-0126Eikemo, H., Gadoury, D. M., Spotts, R. A., Villalta, O., Creemers, P., Seem, R. C., & Stensvand, A. (2011). Evaluation of Six Models to Estimate Ascospore Maturation in Venturia pyrina. Plant Disease, 95(3), 279-284. doi:10.1094/pdis-02-10-0125Li, B.-H., Yang, J.-R., Dong, X.-L., Li, B.-D., & Xu, X.-M. (2007). A dynamic model forecasting infection of pear leaves by conidia of Venturia nashicola and its evaluation in unsprayed orchards. European Journal of Plant Pathology, 118(3), 227-238. doi:10.1007/s10658-007-9138-4Rossi, V., Giosuè, S., & Bugiani, R. (2007). A-scab (Apple-scab), a simulation model for estimating risk of Venturia inaequalis primary infections. EPPO Bulletin, 37(2), 300-308. doi:10.1111/j.1365-2338.2007.01125.xXU, X.-M., BUTT, D. J., & SANTEN, G. (1995). A dynamic model simulating infection of apple leaves by Venturia inaequalis. Plant Pathology, 44(5), 865-876. doi:10.1111/j.1365-3059.1995.tb02746.xRoubal, C., Regis, S., & Nicot, P. C. (2012). Field models for the prediction of leaf infection and latent period ofFusicladium oleagineumon olive based on rain, temperature and relative humidity. Plant Pathology, 62(3), 657-666. doi:10.1111/j.1365-3059.2012.02666.xPayne, A. F., & Smith, D. L. (2012). Development and Evaluation of Two Pecan Scab Prediction Models. Plant Disease, 96(9), 1358-1364. doi:10.1094/pdis-03-11-0202-reTrapman M, Jansonius PJ (2008) Disease management in organic apple orchards is more than applying the right product at the correct time. Ecofruit-13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing: Proceedings to the Conference from 18th February to 20th February 2008 at Weinsberg/Germany. 16–22.HOLB, I. J., JONG, P. F., & HEIJNE, B. (2003). Efficacy and phytotoxicity of lime sulphur in organic apple production. Annals of Applied Biology, 142(2), 225-233. doi:10.1111/j.1744-7348.2003.tb00245.xGent, D. H., Mahaffee, W. F., McRoberts, N., & Pfender, W. F. (2013). The Use and Role of Predictive Systems in Disease Management. Annual Review of Phytopathology, 51(1), 267-289. doi:10.1146/annurev-phyto-082712-102356Alavanja, M. C. R., Hoppin, J. A., & Kamel, F. (2004). Health Effects of Chronic Pesticide Exposure: Cancer and Neurotoxicity. Annual Review of Public Health, 25(1), 155-197. doi:10.1146/annurev.publhealth.25.101802.123020Brent KJ, Hollomon DW (2007) Fungicide resistance in crop pathogens: How can it be managed? FRAC Monog 2. Fungicide Resistance Action Committee.Shtienberg, D. (2013). Will Decision-Support Systems Be Widely Used for the Management of Plant Diseases? Annual Review of Phytopathology, 51(1), 1-16. doi:10.1146/annurev-phyto-082712-102244Leffelaar P (1993) On Systems Analysis and Simulation of Ecological Processes. Kluwer. London.Rossi V, Giosuè S, Caffi T (2010) Modelling plant diseases for decision making in crop protection. In: Oerke E-C, Gerhards R, Menz G, Sikora RA, editors. Precision Crop Protection-the Challenge and Use of Heterogeneity.Hui, C. (2006). Carrying capacity, population equilibrium, and environment’s maximal load. Ecological Modelling, 192(1-2), 317-320. doi:10.1016/j.ecolmodel.2005.07.001Townsend C, Begon M, Harper J (2008) Essentials of ecology. John Wiley and Sons. New York. 510.Zadoks J, Schein R (1979) Epidemiology and plant disease management. Oxford University Press, New York. 427.Bennett, J. C., Diggle, A., Evans, F., & Renton, M. (2013). Assessing eradication strategies for rain-splashed and wind-dispersed crop diseases. Pest Management Science, 69(8), 955-963. doi:10.1002/ps.3459Ghanbarnia, K., Dilantha Fernando, W. G., & Crow, G. (2009). Developing Rainfall- and Temperature-Based Models to Describe Infection of Canola Under Field Conditions Caused by Pycnidiospores of Leptosphaeria maculans. Phytopathology, 99(7), 879-886. doi:10.1094/phyto-99-7-0879Gilligan, C. A., & van den Bosch, F. (2008). Epidemiological Models for Invasion and Persistence of Pathogens. Annual Review of Phytopathology, 46(1), 385-418. doi:10.1146/annurev.phyto.45.062806.094357Buck, A. L. (1981). New Equations for Computing Vapor Pressure and Enhancement Factor. Journal of Applied Meteorology, 20(12), 1527-1532. doi:10.1175/1520-0450(1981)0202.0.co;2Madden L V, Hughes G, van den Bosch F (2007) The study of plant disease epidemics. APS press. St. Paul. 421.González-Domínguez E, Rodríguez-Reina J, García-Jiménez J, Armengol J (2014) Evaluation of fungicides to control loquat scab caused by Fusicladium eriobotryae. Plant Heal Prog Accepted.De Wolf, E. D., & Isard, S. A. (2007). Disease Cycle Approach to Plant Disease Prediction. Annual Review of Phytopathology, 45(1), 203-220. doi:10.1146/annurev.phyto.44.070505.143329Krause, R. A., & Massie, L. B. (1975). Predictive Systems: Modern Approaches to Disease Control. Annual Review of Phytopathology, 13(1), 31-47. doi:10.1146/annurev.py.13.090175.000335Fourie, P., Schutte, T., Serfontein, S., & Swart, F. (2013). Modeling the Effect of Temperature and Wetness on Guignardia Pseudothecium Maturation and Ascospore Release in Citrus Orchards. Phytopathology, 103(3), 281-292. doi:10.1094/phyto-07-11-0194Gadoury, D. M. (1982). A Model to Estimate the Maturity of Ascospores ofVenturia inaequalis. Phytopathology, 72(7), 901. doi:10.1094/phyto-72-901Holtslag, Q. A., Remphrey, W. R., Fernando, W. G. D., St-Pierre, R. G., & Ash, G. H. B. (2004). The development of a dynamic diseaseforecasting model to controlEntomosporium mespilionAmelanchier alnifolia. Canadian Journal of Plant Pathology, 26(3), 304-313. doi:10.1080/07060660409507148Legler SEE, Caffi T, Rossi V (2013) A Model for the development of Erysiphe necator chasmothecia in vineyards. Plant Pathol. DOI:10.1111/ppa.12145.Luo, Y., & Michailides, T. J. (2001). Risk Analysis for Latent Infection of Prune by Monilinia fructicola in California. Phytopathology, 91(12), 1197-1208. doi:10.1094/phyto.2001.91.12.1197Gadoury, D. M. (1986). Forecasting Ascospore Dose of Venturia inaequalis in Commercial Apple Orchards. Phytopathology, 76(1), 112. doi:10.1094/phyto-76-112Gent, D. H., De Wolf, E., & Pethybridge, S. J. (2011). Perceptions of Risk, Risk Aversion, and Barriers to Adoption of Decision Support Systems and Integrated Pest Management: An Introduction. Phytopathology, 101(6), 640-643. doi:10.1094/phyto-04-10-0124Schut, M., Rodenburg, J., Klerkx, L., van Ast, A., & Bastiaans, L. (2014). Systems approaches to innovation in crop protection. A systematic literature review. Crop Protection, 56, 98-108. doi:10.1016/j.cropro.2013.11.017Mills W, Laplante A (1954) Diseases and insect in the orchard. Cornell Ext Bull 711.GVA (2013) Octubre-Noviembre 2013. Butlletí d’avisos 13.MacHardy, W. E. (1989). A Revision of Mills’s Criteria for Predicting Apple Scab Infection Periods. Phytopathology, 79(3), 304. doi:10.1094/phyto-79-30
Declining trends in early warning indicators for HIV drug resistance in Cameroon from 2008-2010: Lessons and challenges for low-resource settings
Rapid scale-up of antiretroviral therapy (ART) and limited access to genotyping assays in low-resource settings (LRS) are inevitably accompanied by an increasing risk of HIV drug resistance (HIVDR). The current study aims to evaluate early warning indicators (EWI) as an efficient strategy to limit the development and spread of preventable HIVDR in these settings, in order to sustain the performance of national antiretroviral therapy (ART) rollout programmes