60 research outputs found

    New trends in teacher\u2019s education. Educational placement of the adopted child

    Get PDF
    In Italy, the number of adopted school-age children is increasing. According to the Commission of Intercountry Adoption (2013), 3106 children were adopted, 47.5% of them are between 5 and 9 years old. The present action-research aims at exploring the spread of good approaches in schools in terms of welcoming of adopted children. For this purpose, 268 teachers of primary schools were involved in analyzing the social representation about adopted children and their family. The results show a simplified vision of the adoptive family, which is described as heroic family or, on the contrary, as a family with difficulty

    Long-term treatment with deferiprone enhances left ventricular ejection function when compared to deferoxamine in patients with thalassemia major

    Get PDF
    Transfusion and iron chelation treatment have significantly reduced morbidity and improved survival of patients with thalassemia major. However, cardiac disease continues to be the most common cause of death. We report the left-ventricular ejection fraction, determined by echocardiography, in one hundred sixtyeight patients with thalassemia major followed for at least 5 years who received continuous monotherapy with deferoxamine (N = 108) or deferiprone (N = 60). The statistical analysis, using the generalized estimating equations model, indicated that the group treated with deferiprone had a significantly better left-ventricular ejection fraction than did those treated with deferoxamine (coefficient 0.97; 95% CI 0.37; 1.6, p = 0.002). The heart may be particularly sensitive to iron-induced mitochondrial damage because of the large number of mitochondria and its low level of antioxidants. Deferiprone, because of its lower molecular weight, might cross into heart mitochondria more efficiently, improving their activity and, thereby, myocardial cell function. Our findings indicate that the long-term administration of deferiprone significantly enhances left-ventricular function over time in comparison with deferoxamine treatment. However, because of limitations related to the design of this study, these findings should be confirmed in a prospective, randomized clinical trial

    Serial echocardiographic left ventricular ejection fraction measurements: a tool for detecting thalassemia major patients at risk of cardiac death

    Get PDF
    Cardiac damage remains a major cause of mortality among patients with thalassemia major. The detection of a lower cardiac magnetic resonance T2* (CMR-T2*) signal has been suggested as a powerful predictor of the subsequent development of heart failure. However, the lack of worldwide availability of CMR-T2* facilities prevents its widespread use for follow-up evaluations of cardiac function in thalassemia major patients, warranting the need to assess the utility of other possible procedures.In this setting,the determination of left ventricular ejection fraction (LVEF)offers an accurate and reproducible method for heart function evaluation. These findings suggest a reduction in LVEF≥7%, over time, determined by 2-D echocardiography, may be considered a strong predictive tool for the detection of thalassemia major patients with increased risk of cardiac death. The reduction of LVEF≥7% had higher (84.76%) predictive value. Finally, Kaplan–Meier survival curves of thalassemia major patients with LVEF≥7% showed a statistically significant decreased probability of survival for heart disease (p=0.0022). However, because of limitations related to the study design, such findings should be confirmed in a large long-term prospective clinical trial

    The Sea Urchin sns5 Chromatin Insulator Improves the Likelihood of Lentiviral Vectors in Erythroid Milieu By Organizing an Independent Chromatin Domain at the Integration Site

    Get PDF
    Retroviral vectors are currently the most suitable vehicles for therapeutic gene transfer in hematopoietic stem cells. However, these vectors are known to integrate rather randomly throughout the genome, suffering the so called chromosomal position effects (PE). Such a critical occurrence most probably depends upon the ability of heterochromatin to spread in the inserted vector sequences. Moreover, the use of transgenes imply genotoxicity effects, since the cis-regulatory sequences harbored by the vector can disturb the proper transcription of the resident genes neighboring the integration site, potentially leading to malignant transformation. Due to their enhancer blocker activity, the incorporation of chromatin insulators in flanking position to the transferred unit can reduce the mentioned dangerous effects. Moreover, by acting as barriers to the spread of heterochromatin, chromatin insulators can also mitigate vector silencing. We have previously shown that the sea urchin sns5 chromatin insulator activity is conserved in mouse and human erythroid milieu: it blocks the βglobin-LCR-HS2 enhancer/globin promoter interaction when placed between them. In addition, when placed in flanking location of a γ-retrovirus vector, sns5 impedes PE variegation and improves vector-specific expression following integration in the erythroid genome. Importantly, by binding both erythroid-specific and ubiquitous factors, sns5 favors the accumulation inside the provirus locus of epigenetic marks commonly associated to an euchromatic state (Acuto S. et al., BCMD 2005; D'Apolito D. et al., 2009; Di Caro D. et al., J Mol Biol 2004; Cavalieri V. et al., NAR 2009). In this study we extend these findings, demonstrating that sns5 works as chromatin insulator also when placed in flanking position of a GFP transgene contained in a lentivirus vector (LV-GFP). A large panel of mouse erythroleukemic clones (MELC) was generated after transduction with uninsulated and sns5 -insulated LV-GFP. Individual clones were screened for single vector integrants (by Q-PCR), and for GFP-expression (by cytofluorimetry). Our results shown that the inclusion of the sns5 element in a forward orientation increased the fraction of vector expressing cells (89% for the insulated vector vs 42% for the uninsulated ones). The clonal variegation of expression, assessed as frequency of clones that showed a percentage of GFP-negative cells in the progeny, decreased in clones transduced with the insulated vectors (7.4% vs 13,9%). It has been suggested that chromatin insulators could shape the architecture of topologically independent chromosome domains. High resolution mapping of chromosomal domains in drosophila and higher eukaryotes highlighted that chromatin insulators play a critical role in shaping the architectural genome organization both in a local chromosome environment and in long range chromosomal interaction. Intriguingly, by using the Chromosome Conformation Capture (3C) technology, we demonstrated that the sns5 -flanked LV-GFP integrated at a single copy in the erythroid cell genome is organized into an independent chromatin loop at the integration site. Worth to mention, no looping was detected in the absence of sns5, indicating that the two flanking copies of sns5 are specifically involved in the reorganization of the chromatin structure at the provirus locus. In conclusion our results not only confirm the conserved and striking boundary function of sns5, but also provide a new clue concerning the molecular mechanism that allows this function to occur. On these basis, our findings reassure the use of sns5 to improve both efficacy and safety of lentiviral vectors for gene therapy

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    • …
    corecore