41 research outputs found

    Crystallization and preliminary X-ray diffraction studies of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus.

    Get PDF
    Journal ArticleThe homotetrameric holo-D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus has been crystallized in the presence of NADP+ using the hanging-drop vapour-diffusion method. Crystals grew from a solution containing 2-methyl-2,4-pentanediol and magnesium acetate. A native data set has been collected to 2.1 A using synchrotron radiation and cryocooling. Diffraction data have been processed in the orthorhombic system (space group P21212) with unit-cell dimensions a = 136.7, b = 153.3, c = 74.9 A and one tetramer per asymmetric unit

    In Vitro Transformation of Primary Human CD34+ Cells by AML Fusion Oncogenes: Early Gene Expression Profiling Reveals Possible Drug Target in AML

    Get PDF
    Different fusion oncogenes in acute myeloid leukemia (AML) have distinct clinical and laboratory features suggesting different modes of malignant transformation. Here we compare the in vitro effects of representatives of 4 major groups of AML fusion oncogenes on primary human CD34+ cells. As expected from their clinical similarities, MLL-AF9 and NUP98-HOXA9 had very similar effects in vitro. They both caused erythroid hyperplasia and a clear block in erythroid and myeloid maturation. On the other hand, AML1-ETO and PML-RARA had only modest effects on myeloid and erythroid differentiation. All oncogenes except PML-RARA caused a dramatic increase in long-term proliferation and self-renewal. Gene expression profiling revealed two distinct temporal patterns of gene deregulation. Gene deregulation by MLL-AF9 and NUP98-HOXA9 peaked 3 days after transduction. In contrast, the vast majority of gene deregulation by AML1-ETO and PML-RARA occurred within 6 hours, followed by a dramatic drop in the numbers of deregulated genes. Interestingly, the p53 inhibitor MDM2 was upregulated by AML1-ETO at 6 hours. Nutlin-3, an inhibitor of the interaction between MDM2 and p53, specifically inhibited the proliferation and self-renewal of primary human CD34+ cells transduced with AML1-ETO, suggesting that MDM2 upregulation plays a role in cell transformation by AML1-ETO. These data show that differences among AML fusion oncogenes can be recapitulated in vitro using primary human CD34+ cells and that early gene expression profiling in these cells can reveal potential drug targets in AML

    Inhibition of K+ efflux and dehydratation of sickle cell by (dhydroindenyl)oxy)alcanoic acid: an inhibitor of the K-Cl cotransport system.

    No full text

    Hemoglobin variants and activity of the (K+Cl-) cotransport system in human erythrocytes

    No full text
    To determine if the activation of the (K+Cl-) cotransport system observed in hemoglobin (Hb) S- or C-containing erythrocytes is related either to a global change of isoelectric point of the Hb molecule or to the specific location of these mutations on the position 6 of the beta chain of Hb, we studied the (K+Cl-) cotransport system in erythrocytes containing beta chain variants exhibiting either the Glu----Lys substitution observed in position beta 6 in Hb C (Hb E: beta 26 Glu----Lys; Hb O-Arab: beta 121 Glu----Lys; Hb Siriraj:beta 7 Glu----Lys) or the Glu----neutral residue substitution observed in position beta 6 in Hb S (Hb G-San Jose: beta 7 Glu----Gly; Hb D Punjab or D-Los Angeles: beta 121 Glu----Gln). The K transport mediated by the (K+Cl-) cotransport was increased in AC, AS and A-Siriraj and A-San Jose red blood cells and was similar to AA control in the other variants. These results indicate that an enhanced (K+Cl-) cotransport is not a property of all positively charged Hb variants, but it is mainly associated with mutations occurring at the beta 6 or beta 7 residues. An interaction of Hb with the cell membrane mediated by the disappearance of one of the negative charged residues (Glu) at this site of the A helix of the beta chain is the most likely candidate for the persistent activation of the (K+Cl-) cotransport system in these Hb variants

    Inhibition of K+ efflux and dehydration of sickle cells by [(dihydroindenyl)oxy]alkanoic acid: an inhibitor of the K+ Cl- cotransport system.

    No full text
    [(Dihydroindenyl)oxy]alkanoic acid (DIOA) was recently introduced as a potent inhibitor of the K+Cl- cotransport system without side effects on other cation transport systems [Garay, R. P., Nazaret, C., Hannaert, P.A. & Cragoe, E. J., Jr. (1988) Mol. Pharmacol. 33, 696-701]. In sickle cells, an abnormal activation of this K+Cl- cotransport system was proposed to be involved in cell K+ loss and dehydration. We found that DIOA inhibited the abnormal sickle cell K+ loss and specifically reduced sickle cell density upon stimulation of the net outward K+Cl- cotransport--i.e., low pH, hypoosmolarity, and activation by N-ethylmaleimide. DIOA opens another therapeutic approach to sickle cell disease by inhibiting cell dehydration, which favors HbS polymerization and reduces erythrocyte deformability
    corecore