41 research outputs found

    Weak-lensing calibration of a stellar mass-based mass proxy for redMaPPer and Voronoi Tessellation clusters in SDSS Stripe 82

    Get PDF
    We present the first weak lensing calibration of μ\mu_{\star}, a new galaxy cluster mass proxy corresponding to the total stellar mass of red and blue members, in two cluster samples selected from the SDSS Stripe 82 data: 230 redMaPPer clusters at redshift 0.1z<0.330.1\leq z<0.33 and 136 Voronoi Tessellation (VT) clusters at 0.1z<0.60.1 \leq z < 0.6. We use the CS82 shear catalog and stack the clusters in μ\mu_{\star} bins to measure a mass-observable power law relation. For redMaPPer clusters we obtain M0=(1.77±0.36)×1014h1MM_0 = (1.77 \pm 0.36) \times 10^{14}h^{-1} M_{\odot}, α=1.74±0.62\alpha = 1.74 \pm 0.62. For VT clusters, we find M0=(4.31±0.89)×1014h1MM_0 = (4.31 \pm 0.89) \times 10^{14}h^{-1} M_{\odot}, α=0.59±0.54\alpha = 0.59 \pm 0.54 and M0=(3.67±0.56)×1014h1MM_0 = (3.67 \pm 0.56) \times 10^{14}h^{-1} M_{\odot}, α=0.68±0.49\alpha = 0.68 \pm 0.49 for a low and a high redshift bin, respectively. Our results are consistent, internally and with the literature, indicating that our method can be applied to any cluster finding algorithm. In particular, we recommend that μ\mu_{\star} be used as the mass proxy for VT clusters. Catalogs including μ\mu_{\star} measurements will enable its use in studies of galaxy evolution in clusters and cluster cosmology.Comment: Updated to be consistent with the published versio

    S-PLUS DR1 galaxy clusters and groups catalogue using PzWav

    Full text link
    We present a catalogue of 4499 groups and clusters of galaxies from the first data release of the multi-filter (5 broad, 7 narrow) Southern Photometric Local Universe Survey (S-PLUS). These groups and clusters are distributed over 273 deg2^2 in the Stripe 82 region. They are found using the PzWav algorithm, which identifies peaks in galaxy density maps that have been smoothed by a cluster scale difference-of-Gaussians kernel to isolate clusters and groups. Using a simulation-based mock catalogue, we estimate the purity and completeness of cluster detections: at S/N>3.3 we define a catalogue that is 80% pure and complete in the redshift range 0.1<z<0.4, for clusters with M200>1014M_{200} > 10^{14} M_\odot. We also assessed the accuracy of the catalogue in terms of central positions and redshifts, finding scatter of σR=12\sigma_R=12 kpc and σz=8.8×103\sigma_z=8.8 \times 10^{-3}, respectively. Moreover, less than 1% of the sample suffers from fragmentation or overmerging. The S-PLUS cluster catalogue recovers ~80% of all known X-ray and Sunyaev-Zel'dovich selected clusters in this field. This fraction is very close to the estimated completeness, thus validating the mock data analysis and paving an efficient way to find new groups and clusters of galaxies using data from the ongoing S-PLUS project. When complete, S-PLUS will have surveyed 9300 deg2^{2} of the sky, representing the widest uninterrupted areas with narrow-through-broad multi-band photometry for cluster follow-up studies.Comment: 17 pages, 15 figures, paper accepted for publication by MNRA

    From SuperBIT to GigaBIT: Informing next-generation balloon-borne telescope design with Fine Guidance System flight data

    Full text link
    The Super-pressure Balloon-borne Imaging Telescope (SuperBIT) is a near-diffraction-limited 0.5m telescope that launched via NASA's super-pressure balloon technology on April 16, 2023. SuperBIT achieved precise pointing control through the use of three nested frames in conjunction with an optical Fine Guidance System (FGS), resulting in an average image stability of 0.055" over 300-second exposures. The SuperBIT FGS includes a tip-tilt fast-steering mirror that corrects for jitter on a pair of focal plane star cameras. In this paper, we leverage the empirical data from SuperBIT's successful 45-night stratospheric mission to inform the FGS design for the next-generation balloon-borne telescope. The Gigapixel Balloon-borne Imaging Telescope (GigaBIT) is designed to be a 1.35m wide-field, high resolution imaging telescope, with specifications to extend the scale and capabilities beyond those of its predecessor SuperBIT. A description and analysis of the SuperBIT FGS will be presented along with methodologies for extrapolating this data to enhance GigaBIT's FGS design and fine pointing control algorithm. We employ a systems engineering approach to outline and formalize the design constraints and specifications for GigaBIT's FGS. GigaBIT, building on the SuperBIT legacy, is set to enhance high-resolution astronomical imaging, marking a significant advancement in the field of balloon-borne telescopes.Comment: 13 pages, 7 figures, SPIE Astronomical Telescopes + Instrumentation 202

    SuperBIT Superpressure Flight Instrument Overview and Performance: Near-diffraction-limited Astronomical Imaging from the Stratosphere

    Get PDF
    SuperBIT was a 0.5 m near-UV to near-infrared wide-field telescope that launched on a NASA superpressure balloon into the stratosphere from New Zealand for a 45-night flight. SuperBIT acquired multiband images of galaxy clusters to study the properties of dark matter using weak gravitational lensing. We provide an overview of the instrument and its various subsystems. We then present the instrument performance from the flight, including the telescope and image stabilization system, the optical system, the power system, and the thermal system. SuperBIT successfully met the instrument’s technical requirements, achieving a telescope pointing stability of 0.″34 ± 0.″10, a focal plane image stability of 0.″055 ± 0.″027, and a point-spread function FWHM of ∼0.″35 over 5-minute exposures throughout the 45-night flight. The telescope achieved a near-diffraction-limited point-spread function in all three science bands (u, b, and g). SuperBIT served as a pathfinder to the GigaBIT observatory, which will be a 1.34 m near-UV to near-infrared balloon-borne telescope

    Euclid: I. Overview of the Euclid mission

    Get PDF
    The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients,dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015–2025 programme of theEuropean Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy,over about 14 000 deg² of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structureformation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range ofscience. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processingsteps, and data products. We also highlight the main science objectives and expected performance
    corecore