22 research outputs found

    Noise in multiple sclerosis: unwanted and necessary

    Get PDF
    As our knowledge about the etiology of multiple sclerosis (MS) increases, deterministic paradigms appear insufficient to describe the pathogenesis of the disease, and the impression is that stochastic phenomena (i.e. random events not necessarily resulting in disease in all individuals) may contribute to the development of MS. However, sources and mechanisms of stochastic behavior have not been investigated and there is no proposed framework to incorporate nondeterministic processes into disease biology. In this report, we will first describe analogies between physics of nonlinear systems and cell biology, showing how small-scale random perturbations can impact on large-scale phenomena, including cell function. We will then review growing and solid evidence showing that stochastic gene expression (or gene expression “noise”) can be a driver of phenotypic variation. Moreover, we will describe new methods that open unprecedented opportunities for the study of such phenomena in patients and the impact of this information on our understanding of MS course and therapy

    Imaging Characteristics of Choroid Plexuses in Presymptomatic Multiple Sclerosis. A Retrospective Study

    Get PDF
    Background and Objectives Recent imaging studies have suggested a possible involvement of the choroid plexus (CP) in multiple sclerosis (MS). Here, we investigated whether CP changes are already detectable at the earliest stage of MS, preceding symptom onset. Methods This study is a retrospective analysis of 27 patients with presymptomatic MS, 97 patients with clinically definite MS (CDMS), and 53 healthy controls (HCs) who underwent a cross-sectional 3T-MRI acquisition; of which, 22 MS, 19 HCs, and 1 presymptomatic MS (evaluated 8 months before conversion to CDMS) also underwent translocator protein (TSPO) F-18-DPA-714 PET and were included in the analysis. CPs were manually segmented on 3D T1-weighted images for volumetric analysis. CP F-18-DPA-714 uptake, reflecting inflammation, was calculated as the average standardized uptake value (SUV). Multivariable regressions adjusted for age, sex, and ventricular and brain volume were fitted to test CP volume differences between presymptomatic patients and MS or HCs. For the presymptomatic case who also had F-18-DPA-714 PET, CP SUV differences with MS and HCs were assessed through Crawford-Howell tests. To provide further insight into the interpretation of F-18-DPA-714-PET uptake at the CP level, a postmortem analysis of CPs in MS vs HCs was performed to characterize the cellular localization of TSPO expression. Results Compared with HCs, patients with presymptomatic MS had 32% larger CPs (beta = 0.38, p = 0.001), which were not dissimilar to MS CPs (p = 0.69). Moreover, in the baseline scan of the presymptomatic case who later on developed MS, TSPO PET showed 33% greater CP inflammation vs HCs (p = 0.04), although no differences in F-18-DPA-714 uptake were found in parenchymal regions vs controls. CP postmortem analysis identified a population of CD163(+) mononuclear phagocytes expressing TSPO in MS, possibly contributing to the increased F-18-DPA-714 uptake. Discussion We identified an imaging signature in CPs at the presymptomatic MS stage using MRI; in addition, we found an increased CP inflammation with PET in a single presymptomatic patient. These findings suggest a role of CP imaging as an early biomarker and argue for the involvement of the blood-CSF barrier dysfunction in disease development

    Sporadic MM-1 Type Creutzfeldt-Jakob Disease With Hemiballic Presentation and No Cognitive Impairment Until Death: How New NCJDRSU Diagnostic Criteria May Allow Early Diagnosis

    Get PDF
    Sporadic Creutzfeldt-Jakob disease is the most common human prion disorder. Although associated with heterogeneous clinical phenotypes, its distinctive feature is the presence of a rapidly progressive multidomain cognitive impairment. We describe the atypical case of a patient affected by sporadic Methionine/Methionine type 1 Creutzfeldt-Jakob disease (typically associated with early cognitive decline) who presented with an isolated hemiballic syndrome and no signs of cognitive involvement until death. We review sporadic Creutzfeldt-Jakob disease diagnostic criteria and their updates since their first formulation, highlighting their limitations in clinical diagnostic work-up. Finally, we discuss the recently introduced National Creutzfeldt-Jakob Disease Research and Surveillance Unit diagnostic criteria, suggesting how their application could support an early clinical diagnosis, even in atypical cases, such as the one presented

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    MSA Mimic? Rare Occurrence of Anti-Hu Autonomic Failure and Thymoma in a Patient with Parkinsonism: Case Report and Literature Review

    No full text
    Thymoma is a tumor originating from thymic gland, frequently manifesting with paraneoplastic neurological disorders. Its association with paraneoplastic dysautonomia is relatively uncommon. Here, we describe the challenging case of a 71 year-old female who developed subacute autonomic failure with digestive pseudo-obstruction, dysphagia, urinary tract dysfunction and orthostatic hypotension complicating an underlying extrapyramidal syndrome that had started 3 months before hospital admission. Autonomic symptoms had 2-month course and acutely worsened just before and during hospitalization. Combination of severe dysautonomia and parkinsonism mimicked rapidly progressing multiple system atrophy. However, diagnostic exams showed thymic tumor with positive anti-Hu antibodies on both serum and cerebrospinal fluid. Complete response of dysautonomia to immunoglobulins followed by thymectomy confirmed the diagnosis of anti-Hu-related paraneoplastic neurological syndrome. With regards to extrapyramidal symptoms, despite previous descriptions of paraneoplastic parkinsonism caused by other antineuronal antibodies, in our case no relation between anti-Hu and parkinsonism could be identified. A literature review of published reports describing anti-Hu positivity in thymic neoplasms highlighted that a definite autonomic disease due to anti-Hu antibodies is extremely rare in patients with thymoma but without myasthenia gravis, with only one case published so far

    A Mechanistic, Stochastic Model Helps Understand Multiple Sclerosis Course and Pathogenesis

    Get PDF
    Heritable and nonheritable factors play a role in multiple sclerosis, but their effect size appears too small, explaining relatively little about disease etiology. Assuming that the factors that trigger the onset of the disease are, to some extent, also those that generate its remissions and relapses, we attempted to model the erratic behaviour of the disease course as observed on a dataset containing the time series of relapses and remissions of 70 patients free of disease-modifying therapies. We show that relapses and remissions follow exponential decaying distributions, excluding periodic recurrences and confirming that relapses manifest randomly in time. It is found that a mechanistic model with a random forcing describes in a satisfactory manner the occurrence of relapses and remissions, and the differences in the length of time spent in each one of the two states. This model may describe how interactions between “soft” etiologic factors occasionally reach the disease threshold thanks to comparably small external random perturbations. The model offers a new context to rethink key problems such as “missing heritability” and “hidden environmental structure” in the etiology of complex traits

    Flecainide-Induced Brugada Syndrome in a Patient With Skeletal Muscle Sodium Channelopathy: A Case Report With Critical Therapeutical Implications and Review of the Literature

    No full text
    Skeletal muscle sodium channelopathies are a group of neuromuscular disorders associated with mutations in the SCN4A gene. Because principal sodium channel isoforms expressed in the skeletal muscles and the heart are distinct one from the other, this condition usually spares cardiac functioning. Nonetheless, evidence on a possible link between skeletal muscle and cardiac sodium channelopathies has emerged in recent years. To date, eight patients bearing pathogenetic mutations in the SCN4A gene and manifesting cardiac electrophysiological alterations have been reported in literature. Among these patients, three presented a phenotype compatible with Brugada syndrome. We report the case of a 29-year-old patient affected by non-dystrophic myotonia associated with a p.G1306E mutation in the SCN4A gene, who presented symptoms of syncope and palpitation after the introduction of flecainide as an anti-myotonic agent. ECG and ajmaline challenge were consistent with the diagnosis of Brugada syndrome, leading to the implantation of a cardioverter defibrillator. No mutation in causative genes for Brugada syndrome was detected. Mexiletine treatment reduced myotonia without any cardiac adverse events. This case report highlights the clinical relevance of the recognition of cardiac electrophysiological alterations in skeletal muscle sodium channelopathies. The discovery of a possible pathogenetic linkage between skeletal muscle and cardiac sodium channelopathies may have significant implications in patients' management, also in light of the fact that class 1C anti-arrhythmics are potential triggers for life-threatening arrhythmias in patients with Brugada syndrome

    Axial multi-layer perceptron architecture for automatic segmentation of choroid plexus in multiple sclerosis

    No full text
    International audienceChoroid plexuses (CP) are structures of the ventricles of the brain which produce most of the cerebrospinal fluid (CSF). Several postmortem and in vivo studies have pointed towards their role in the inflammatory process in multiple sclerosis (MS). Automatic segmentation of CP from MRI thus has high value for studying their characteristics in large cohorts of patients. To the best of our knowledge, the only freely available tool for CP segmentation is FreeSurfer but its accuracy for this specific structure is poor. In this paper, we propose to automatically segment CP from non-contrast enhanced T1-weighted MRI. To that end, we introduce a new model called "Axial-MLP" based on an assembly of Axial multi-layer perceptrons (MLPs). This is inspired by recent works which showed that the self-attention layers of Transformers can be replaced with MLPs. This approach is systematically compared with a standard 3D U-Net, nnU-Net, Freesurfer and FastSurfer. For our experiments, we make use of a dataset of 141 subjects (44 controls and 97 patients with MS). We show that all the tested deep learning (DL) methods outperform FreeSurfer (Dice around 0.7 for DL vs 0.33 for FreeSurfer). Axial-MLP is competitive with U-Nets even though it is slightly less accurate. The conclusions of our paper are two-fold: 1) the studied deep learning methods could be useful tools to study CP in large cohorts of MS patients; 2)~Axial-MLP is a potentially viable alternative to convolutional neural networks for such tasks, although it could benefit from further improvements
    corecore