8,391 research outputs found
Bounding the Hubble flow in terms of the w parameter
The last decade has seen increasing efforts to circumscribe and bound the
cosmological Hubble flow in terms of model-independent constraints on the
cosmological fluid - such as, for instance, the classical energy conditions of
general relativity. Quite a bit can certainly be said in this regard, but much
more refined bounds can be obtained by placing more precise constraints (either
theoretical or observational) on the cosmological fluid. In particular, the use
of the w-parameter (w=p/rho) has become increasingly common as a surrogate for
trying to say something about the cosmological equation of state. Herein we
explore the extent to which a constraint on the w-parameter leads to useful and
nontrivial constraints on the Hubble flow, in terms of constraints on density
rho(z), Hubble parameter H(z), density parameter Omega(z), cosmological
distances d(z), and lookback time T(z). In contrast to other partial results in
the literature, we carry out the computations for arbitrary values of the space
curvature k in [-1,0,+1], equivalently for arbitrary Omega_0 <= 1.Comment: 15 page
van Vleck determinants: traversable wormhole spacetimes
Calculating the van Vleck determinant in traversable wormhole spacetimes is
an important ingredient in understanding the physical basis behind Hawking's
chronology protection conjecture. This paper presents extensive computations of
this object --- at least in the short--throat flat--space approximation. An
important technical trick is to use an extension of the usual junction
condition formalism to probe the full Riemann tensor associated with a thin
shell of matter. Implications with regard to Hawking's chronology protection
conjecture are discussed. Indeed, any attempt to transform a single isolated
wormhole into a time machine results in large vacuum polarization effects
sufficient to disrupt the internal structure of the wormhole before the onset
of Planck scale physics, and before the onset of time travel. On the other
hand, it is possible to set up a putative time machine built out of two or more
wormholes, each of which taken in isolation is not itself a time machine. Such
``Roman configurations'' are much more subtle to analyse. For some particularly
bizarre configurations (not traversable by humans) the vacuum polarization
effects can be arranged to be arbitrarily small at the onset of Planck scale
physics. This indicates that the disruption scale has been pushed down into the
Planck slop. Ultimately, for these configurations, questions regarding the
truth or falsity of Hawking's chronology protection can only be addressed by
entering the uncharted wastelands of full fledged quantum gravity.Comment: 42 pages, ReV_TeX 3.
Tolman wormholes violate the strong energy condition
For an arbitrary Tolman wormhole, unconstrained by symmetry, we shall define
the bounce in terms of a three-dimensional edgeless achronal spacelike
hypersurface of minimal volume. (Zero trace for the extrinsic curvature plus a
"flare-out" condition.) This enables us to severely constrain the geometry of
spacetime at and near the bounce and to derive general theorems regarding
violations of the energy conditions--theorems that do not involve geodesic
averaging but nevertheless apply to situations much more general than the
highly symmetric FRW-based subclass of Tolman wormholes. [For example: even
under the mildest of hypotheses, the strong energy condition (SEC) must be
violated.] Alternatively, one can dispense with the minimal volume condition
and define a generic bounce entirely in terms of the motion of test particles
(future-pointing timelike geodesics), by looking at the expansion of their
timelike geodesic congruences. One re-confirms that the SEC must be violated at
or near the bounce. In contrast, it is easy to arrange for all the other
standard energy conditions to be satisfied.Comment: 8 pages, ReV-TeX 3.
Fundamental limitations on "warp drive" spacetimes
"Warp drive" spacetimes are useful as "gedanken-experiments" that force us to
confront the foundations of general relativity, and among other things, to
precisely formulate the notion of "superluminal" communication. We verify the
non-perturbative violation of the classical energy conditions of the Alcubierre
and Natario warp drive spacetimes and apply linearized gravity to the
weak-field warp drive, testing the energy conditions to first and second order
of the non-relativistic warp-bubble velocity. We are primarily interested in a
secondary feature of the warp drive that has not previously been remarked upon,
if it could be built, the warp drive would be an example of a "reaction-less
drive". For both the Alcubierre and Natario warp drives we find that the
occurrence of significant energy condition violations is not just a high-speed
effect, but that the violations persist even at arbitrarily low speeds.
An interesting feature of this construction is that it is now meaningful to
place a finite mass spaceship at the center of the warp bubble, and compare the
warp field energy with the mass-energy of the spaceship. There is no hope of
doing this in Alcubierre's original version of the warp-field, since by
definition the point in the center of the warp bubble moves on a geodesic and
is "massless". That is, in Alcubierre's original formalism and in the Natario
formalism the spaceship is always treated as a test particle, while in the
linearized theory we can treat the spaceship as a finite mass object. For both
the Alcubierre and Natario warp drives we find that even at low speeds the net
(negative) energy stored in the warp fields must be a significant fraction of
the mass of the spaceship.Comment: 18 pages, Revtex4. V2: one reference added, some clarifying comments
and discussion, no physics changes, accepted for publication in Classical and
Quantum Gravit
Gravitational vacuum polarization IV: Energy conditions in the Unruh vacuum
Building on a series of earlier papers [gr-qc/9604007, gr-qc/9604008,
gr-qc/9604009], I investigate the various point-wise and averaged energy
conditions in the Unruh vacuum. I consider the quantum stress-energy tensor
corresponding to a conformally coupled massless scalar field, work in the
test-field limit, restrict attention to the Schwarzschild geometry, and invoke
a mixture of analytical and numerical techniques. I construct a semi-analytic
model for the stress-energy tensor that globally reproduces all known numerical
results to within 0.8%, and satisfies all known analytic features of the
stress-energy tensor. I show that in the Unruh vacuum (1) all standard
point-wise energy conditions are violated throughout the exterior region--all
the way from spatial infinity down to the event horizon, and (2) the averaged
null energy condition is violated on all outgoing radial null geodesics. In a
pair of appendices I indicate general strategy for constructing semi-analytic
models for the stress-energy tensor in the Hartle-Hawking and Boulware states,
and show that the Page approximation is in a certain sense the minimal ansatz
compatible with general properties of the stress-energy in the Hartle-Hawking
state.Comment: 40 pages; plain LaTeX; uses epsf.sty (ten encapsulated postscript
figures); two tables (table and tabular environments). Should successfully
compile under both LaTeX 209 and the 209 compatibility mode of LaTeX2
Acoustic horizons for axially and spherically symmetric fluid flow
We investigate the formation of acoustic horizons for an inviscid fluid
moving in a pipe in the case of stationary and axi-symmetric flow. We show
that, differently from what is generally believed, the acoustic horizon forms
in correspondence of either a local minimum or maximum of the flux tube
cross-section. Similarly, the external potential is required to have either a
maximum or a minimum at the horizon, so that the external force has to vanish
there. Choosing a power-law equation of state for the fluid, , we solve the equations of the fluid dynamics and show that the two
possibilities are realized respectively for and . These results
are extended also to the case of spherically symmetric flow.Comment: 6 pages, 3 figure
Quantum Field Theory Constrains Traversable Wormhole Geometries
Recently a bound on negative energy densities in four-dimensional Minkowski
spacetime was derived for a minimally coupled, quantized, massless, scalar
field in an arbitrary quantum state. The bound has the form of an uncertainty
principle-type constraint on the magnitude and duration of the negative energy
density seen by a timelike geodesic observer. When spacetime is curved and/or
has boundaries, we argue that the bound should hold in regions small compared
to the minimum local characteristic radius of curvature or the distance to any
boundaries, since spacetime can be considered approximately Minkowski on these
scales. We apply the bound to the stress-energy of static traversable wormhole
spacetimes. Our analysis implies that either the wormhole must be only a little
larger than Planck size or that there is a large discrepancy in the length
scales which characterize the wormhole. In the latter case, the negative energy
must typically be concentrated in a thin band many orders of magnitude smaller
than the throat size. These results would seem to make the existence of
macroscopic traversable wormholes very improbable.Comment: 26 pages, plain LaTe
How to make a traversable wormhole from a Schwarzschild black hole
The theoretical construction of a traversable wormhole from a Schwarzschild
black hole is described, using analytic solutions in Einstein gravity. The
matter model is pure phantom radiation (pure radiation with negative energy
density) and the idealization of impulsive radiation is employed.Comment: 4 pages, 4 figure
Black-hole information puzzle: A generic string-inspired approach
Given the insight steming from string theory, the origin of the black-hole
(BH) information puzzle is traced back to the assumption that it is physically
meaningful to trace out the density matrix over negative-frequency Hawking
particles. Instead, treating them as virtual particles necessarily absorbed by
the BH in a manner consistent with the laws of BH thermodynamics, and tracing
out the density matrix only over physical BH states, the complete evaporation
becomes compatible with unitarity.Comment: 8 pages, revised, title changed, to appear in Eur. Phys. J.
A Lemaitre-Tolman-Bondi cosmological wormhole
We present a new analytical solution of the Einstein field equations
describing a wormhole shell of zero thickness joining two
Lema{\i}tre-Tolman-Bondi universes, with no radial accretion. The material on
the shell satisfies the energy conditions and, at late times, the shell becomes
comoving with the dust-dominated cosmic substratum.Comment: 5 pages, latex, no figures, to appear in Phys. Rev.
- …