12,276 research outputs found
Port-Hamiltonian modeling for soft-finger manipulation
In this paper, we present a port-Hamiltonian model of a multi-fingered robotic hand, with soft-pads, while grasping and manipulating an object. The algebraic constraints of the interconnected systems are represented by a geometric object, called Dirac structure. This provides a powerful way to describe the non-contact to contact transition and contact viscoelasticity, by using the concepts of energy flows and power preserving interconnections. Using the port based model, an Intrinsically Passive Controller (IPC) is used to control the internal forces. Simulation results validate the model and demonstrate the effectiveness of the port-based approach
Fourier spectra from exoplanets with polar caps and ocean glint
The weak orbital-phase dependent reflection signal of an exoplanet contains
information on the planet surface, such as the distribution of continents and
oceans on terrestrial planets. This light curve is usually studied in the time
domain, but because the signal from a stationary surface is (quasi)periodic,
analysis of the Fourier series may provide an alternative, complementary
approach.
We study Fourier spectra from reflected light curves for geometrically simple
configurations. Depending on its atmospheric properties, a rotating planet in
the habitable zone could have circular polar ice caps. Tidally locked planets,
on the other hand, may have symmetric circular oceans facing the star. These
cases are interesting because the high-albedo contrast at the sharp edges of
the ice-sheets and the glint from the host star in the ocean may produce
recognizable light curves with orbital periodicity, which could also be
interpreted in the Fourier domain.
We derive a simple general expression for the Fourier coefficients of a
quasiperiodic light curve in terms of the albedo map of a Lambertian planet
surface. Analytic expressions for light curves and their spectra are calculated
for idealized situations, and dependence of spectral peaks on the key
parameters inclination, obliquity, and cap size is studied.Comment: 15 pages, 2 tables, 13 figure
Cylindrically symmetric wormholes
This paper discusses traversable wormholes that differ slightly but
significantly from those of the Morris-Thorne type under the assumption of
cylindrical symmetry. The throat is a piecewise smooth cylindrical surface
resulting in a shape function that is not differentiable at some value. It is
proposed that the regular derivative be replaced by a one-sided derivative at
this value. The resulting wormhole geometry satisfies the weak energy
condition.Comment: Supplied missing figures; 15 pages AMSTe
Sonoluminescence and the QED vacuum
In this talk I shall describe an extension of the quantum-vacuum approach to
sonoluminescence proposed several years ago by J.Schwinger. We shall first
consider a model calculation based on Bogolubov coefficients relating the QED
vacuum in the presence of an expanded bubble to that in the presence of a
collapsed bubble. In this way we shall derive an estimate for the spectrum and
total energy emitted. This latter will be shown to be proportional to the
volume of space over which the refractive index changes, as Schwinger
predicted. After this preliminary check we shall deal with the physical
constraints that any viable dynamical model for SL has to satisfy in order to
fit the experimental data. We shall emphasize the importance of the timescale
of the change in refractive index. This discussion will led us to propose a
somewhat different version of dynamical Casimir effect in which the change in
volume of the bubble is no longer the only source for the change in the
refractive index.Comment: 15 pages, 1 figure, uses sprocl.sty. Talk at the 4th Workshop on
Quantum Field Theory Under the Influence of External Conditions, Leipzig,
14-18 September, 199
From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture
The recent interest in ``time machines'' has been largely fueled by the
apparent ease with which such systems may be formed in general relativity,
given relatively benign initial conditions such as the existence of traversable
wormholes or of infinite cosmic strings. This rather disturbing state of
affairs has led Hawking to formulate his Chronology Protection Conjecture,
whereby the formation of ``time machines'' is forbidden. This paper will use
several simple examples to argue that the universe appears to exhibit a
``defense in depth'' strategy in this regard. For appropriate parameter regimes
Casimir effects, wormhole disruption effects, and gravitational back reaction
effects all contribute to the fight against time travel. Particular attention
is paid to the role of the quantum gravity cutoff. For the class of model
problems considered it is shown that the gravitational back reaction becomes
large before the Planck scale quantum gravity cutoff is reached, thus
supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision
CN rings in full protoplanetary disks around young stars as probes of disk structure
Bright ring-like structure emission of the CN molecule has been observed in
protoplanetary disks. We investigate whether such structures are due to the
morphology of the disk itself or if they are instead an intrinsic feature of CN
emission. With the intention of using CN as a diagnostic, we also address to
which physical and chemical parameters CN is most sensitive. A set of disk
models were run for different stellar spectra, masses, and physical structures
via the 2D thermochemical code DALI. An updated chemical network that accounts
for the most relevant CN reactions was adopted. Ring-shaped emission is found
to be a common feature of all adopted models; the highest abundance is found in
the upper outer regions of the disk, and the column density peaks at 30-100 AU
for T Tauri stars with standard accretion rates. Higher mass disks generally
show brighter CN. Higher UV fields, such as those appropriate for T Tauri stars
with high accretion rates or for Herbig Ae stars or for higher disk flaring,
generally result in brighter and larger rings. These trends are due to the main
formation paths of CN, which all start with vibrationally excited H2*
molecules, that are produced through far ultraviolet (FUV) pumping of H2. The
model results compare well with observed disk-integrated CN fluxes and the
observed location of the CN ring for the TW Hya disk. CN rings are produced
naturally in protoplanetary disks and do not require a specific underlying disk
structure such as a dust cavity or gap. The strong link between FUV flux and CN
emission can provide critical information regarding the vertical structure of
the disk and the distribution of dust grains which affects the UV penetration,
and could help to break some degeneracies in the SED fitting. In contrast with
C2H or c-C3H2, the CN flux is not very sensitive to carbon and oxygen
depletion.Comment: New version of paper, correcting too high H2 excitation rates and
consequently too high CN column densities. Qualitative conclusions of the
paper remain unchanged. Quantitatively, the CN column densities are an order
of magnitude lower whereas fluxes decrease by a factor of 3-4. Rings are
larger by up to a factor of 2. 13 pages, 19 figures, accepted for publication
in A&
Area products for stationary black hole horizons
Area products for multi-horizon stationary black holes often have intriguing
properties, and are often (though not always) independent of the mass of the
black hole itself (depending only on various charges, angular momenta, and
moduli). Such products are often formulated in terms of the areas of inner
(Cauchy) horizons and outer (event) horizons, and sometimes include the effects
of unphysical "virtual" horizons. But the conjectured mass-independence
sometimes fails. Specifically, for the Schwarzschild-de Sitter [Kottler] black
hole in (3+1) dimensions it is shown by explicit exact calculation that the
product of event horizon area and cosmological horizon area is not mass
independent. (Including the effect of the third "virtual" horizon does not
improve the situation.) Similarly, in the Reissner-Nordstrom-anti-de Sitter
black hole in (3+1) dimensions the product of inner (Cauchy) horizon area and
event horizon area is calculated (perturbatively), and is shown to be not mass
independent. That is, the mass-independence of the product of physical horizon
areas is not generic. In spherical symmetry, whenever the quasi-local mass m(r)
is a Laurent polynomial in aerial radius, r=sqrt{A/4\pi}, there are
significantly more complicated mass-independent quantities, the elementary
symmetric polynomials built up from the complete set of horizon radii (physical
and virtual). Sometimes it is possible to eliminate the unphysical virtual
horizons, constructing combinations of physical horizon areas that are mass
independent, but they tend to be considerably more complicated than the simple
products and related constructions currently being mooted in the literature.Comment: V1: 16 pages; V2: 9 pages (now formatted in PRD style). Minor change
in title. Extra introduction, background, discussion. Several additional
references; other references updated. Minor typos fixed. This version
accepted for publication in PRD; V3: Minor typos fixed. Published versio
Bounding the Hubble flow in terms of the w parameter
The last decade has seen increasing efforts to circumscribe and bound the
cosmological Hubble flow in terms of model-independent constraints on the
cosmological fluid - such as, for instance, the classical energy conditions of
general relativity. Quite a bit can certainly be said in this regard, but much
more refined bounds can be obtained by placing more precise constraints (either
theoretical or observational) on the cosmological fluid. In particular, the use
of the w-parameter (w=p/rho) has become increasingly common as a surrogate for
trying to say something about the cosmological equation of state. Herein we
explore the extent to which a constraint on the w-parameter leads to useful and
nontrivial constraints on the Hubble flow, in terms of constraints on density
rho(z), Hubble parameter H(z), density parameter Omega(z), cosmological
distances d(z), and lookback time T(z). In contrast to other partial results in
the literature, we carry out the computations for arbitrary values of the space
curvature k in [-1,0,+1], equivalently for arbitrary Omega_0 <= 1.Comment: 15 page
- âŠ