8,370 research outputs found
Riemannian geometry of irrotational vortex acoustics
We consider acoustic propagation in an irrotational vortex, using the
technical machinery of differential geometry to investigate the ``acoustic
geometry'' that is probed by the sound waves. The acoustic space-time curvature
of a constant circulation hydrodynamical vortex leads to deflection of phonons
at appreciable distances from the vortex core. The scattering angle for phonon
rays is shown to be quadratic in the small quantity , where
is the vortex circulation, the speed of sound, and the impact
parameter.Comment: 4 pages, 2 figures, RevTex4. Discussion of focal length added; to
appear in Physical Review Letter
Energy management of three-dimensional minimum-time intercept
A real-time computer algorithm to control and optimize aircraft flight profiles is described and applied to a three-dimensional minimum-time intercept mission
Theorems on gravitational time delay and related issues
Two theorems related to gravitational time delay are proven. Both theorems
apply to spacetimes satisfying the null energy condition and the null generic
condition. The first theorem states that if the spacetime is null geodesically
complete, then given any compact set , there exists another compact set
such that for any , if there exists a ``fastest null
geodesic'', , between and , then cannot enter . As
an application of this theorem, we show that if, in addition, the spacetime is
globally hyperbolic with a compact Cauchy surface, then any observer at
sufficiently late times cannot have a particle horizon. The second theorem
states that if a timelike conformal boundary can be attached to the spacetime
such that the spacetime with boundary satisfies strong causality as well as a
compactness condition, then any ``fastest null geodesic'' connecting two points
on the boundary must lie entirely within the boundary. It follows from this
theorem that generic perturbations of anti-de Sitter spacetime always produce a
time delay relative to anti-de Sitter spacetime itself.Comment: 15 pages, 1 figure. Example of gauge perturbation changed/corrected.
Two footnotes added and one footnote remove
Warped space-time for phonons moving in a perfect nonrelativistic fluid
We construct a kinematical analogue of superluminal travel in the ``warped''
space-times curved by gravitation, in the form of ``super-phononic'' travel in
the effective space-times of perfect nonrelativistic fluids. These warp-field
space-times are most easily generated by considering a solid object that is
placed as an obstruction in an otherwise uniform flow. No violation of any
condition on the positivity of energy is necessary, because the effective
curved space-times for the phonons are ruled by the Euler and continuity
equations, and not by the Einstein field equations.Comment: 7 pages, 1 figure. Version as published; references update
Enhancement of superconductivity near the ferromagnetic quantum critical point in UCoGe
We report a high-pressure single crystal study of the superconducting
ferromagnet UCoGe. Ac-susceptibility and resistivity measurements under
pressures up to 2.2 GPa show ferromagnetism is smoothly depressed and vanishes
at a critical pressure GPa. Near the ferromagnetic critical point
superconductivity is enhanced. Upper-critical field measurements under pressure
show attains remarkably large values, which provides solid evidence
for spin-triplet superconductivity over the whole pressure range. The obtained
phase diagram reveals superconductivity is closely connected to a
ferromagnetic quantum critical point hidden under the superconducting `dome'.Comment: 4 pages, 3 figures; accepted for publication in PR
Acoustic horizons for axially and spherically symmetric fluid flow
We investigate the formation of acoustic horizons for an inviscid fluid
moving in a pipe in the case of stationary and axi-symmetric flow. We show
that, differently from what is generally believed, the acoustic horizon forms
in correspondence of either a local minimum or maximum of the flux tube
cross-section. Similarly, the external potential is required to have either a
maximum or a minimum at the horizon, so that the external force has to vanish
there. Choosing a power-law equation of state for the fluid, , we solve the equations of the fluid dynamics and show that the two
possibilities are realized respectively for and . These results
are extended also to the case of spherically symmetric flow.Comment: 6 pages, 3 figure
Effective spacetime and Hawking radiation from moving domain wall in thin film of 3He-A
An event horizon for "relativistic" fermionic quasiparticles can be
constructed in a thin film of superfluid 3He-A. The quasiparticles see an
effective "gravitational" field which is induced by a topological soliton of
the order parameter. Within the soliton the "speed of light" crosses zero and
changes sign. When the soliton moves, two planar event horizons (black hole and
white hole) appear, with a curvature singularity between them. Aside from the
singularity, the effective spacetime is incomplete at future and past
boundaries, but the quasiparticles cannot escape there because the
nonrelativistic corrections become important as the blueshift grows, yielding
"superluminal" trajectories. The question of Hawking radiation from the moving
soliton is discussed but not resolved.Comment: revtex file, 4 pages, 2 figures, submitted to JETP Let
Gravastars must have anisotropic pressures
One of the very small number of serious alternatives to the usual concept of
an astrophysical black hole is the "gravastar" model developed by Mazur and
Mottola; and a related phase-transition model due to Laughlin et al. We
consider a generalized class of similar models that exhibit continuous pressure
-- without the presence of infinitesimally thin shells. By considering the
usual TOV equation for static solutions with negative central pressure, we find
that gravastars cannot be perfect fluids -- anisotropic pressures in the
"crust" of a gravastar-like object are unavoidable. The anisotropic TOV
equation can then be used to bound the pressure anisotropy. The transverse
stresses that support a gravastar permit a higher compactness than is given by
the Buchdahl--Bondi bound for perfect fluid stars. Finally we comment on the
qualitative features of the equation of state that gravastar material must have
if it is to do the desired job of preventing horizon formation.Comment: V1: 15 pages; 4 figures; uses iopart.cls; V2: 16 pages; added 3
references and brief discussio
- …