49 research outputs found

    The effect of vegetation patterns on Aeolian mass flux at regional scale: a wind tunnel study

    Get PDF
    Although insight on the effect of vegetation pattern on Aeolian mass transport is essential for re-planting degraded land, only limited knowledge on this effect is available. The objective of this research was to understand the effect of vegetation design on the Aeolian mass flux inside a single land unit and at the borders among land units. A simulation of Atriplex halimus shrubs inside a wind tunnel was made, and sand redistribution was measured after the application of 200-230 seconds wind at a speed of 11 ms-1. The study showed that: 1) sediment maximum transport inside a single land unit is related to the neighboring land units and to the vegetation pattern within both the unit itself and the neighboring land units; 2) the effect of neighboring land units includes the protection effect and the ruling of sediment crossing from one land unit to the neighboring land units; 3) for the designing of re-planting of degraded land the ‘streets’ (zones of erosion areas similar to streets) effect need to be considered; and 4) in addition to the general knowledge needed on the effect of vegetation pattern on the erosion and deposition within an area, it is important to have insight on the redistribution of sediment at small scales upon the aim of the project

    Documented spatial data set containing the subdivision of the basins into groundwater systems and subsystems, the selected locations per subsystem and a description of these sites, available data and projected additional measurements and equipment

    Full text link
    The establishment of tools for trends analysis in groundwater is essential for the prediction and evaluation of measures taken within context of the Water Framework Directive and the draft Groundwater Directive. This report describes the spatial data sets which will be used for the purpose of detection, aggregation and extrapolation of temporal trends in groundwater quality. Trend analysis methods will be applied and tested at various scales and in various hydrogeological situations. The report contains a description of the studied sub-basins in TREND 2, including information on hydrogeology, land use and pressures, available data and projected additional measurements. Major differences between the sub-basins and the data sets are described to examine consequences for the work on trend detection. One of the challenges for TREND 2 is to define criteria for the application of various statistical and deterministic trend approaches for a range of hydrogeological conditions, spatial scales and types of groundwater monitoring. An overview of these conditions, scales and monitoring types is provided in the present report.FP6 Integrated Project AquaTerra Integrated Modelling of the river-sediment-soil-groundwater system; advanced tools for the management of catchment areas and river basins in the context of global change (Project no. 505428 - GOCE

    Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment

    Get PDF
    Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem-scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m-deep in a peat bog over a 7-year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7-year trend in the DI14 C of the ambient plots which remained similar to their DO14 C. At +6.75 °C and +9 °C, the 14C of DIC, a product of microbial respiration, initially resembled ambient plots but became more depleted over 7 years of warming. We attributed the shifts in DI14 C to the increasing importance of solid phase peat as a substrate for microbial respiration and quantified this shift via the radiocarbon mass balance. The mass-balance model revealed increases in peat-supported respiration of the catotelm depths in heated plots over time and relative to ambient enclosures, from a baseline of 20%–25% in ambient enclosures, to 35%–40% in the heated plots. We find that warming stimulates microorganisms to respire ancient peat C, deposited under prior climate (cooler) conditions. This apparent destabilization of the large peat C reservoir has implications for peatland-climate feedbacks especially if the balance of the peatland is tipped from net C sink to C source. Plain Language Summary Since the end of the last glacial period, about 20 thousand years ago, peatlands have taken up carbon and now store an amount nearly equivalent to the quantity in the atmosphere. Microorganisms consume and respire that peat C releasing it back to the atmosphere as CO2 and CH4. Until now, many studies have shown that microorganisms prefer to consume the most recently fixed carbon and that the deeply buried ancient peat carbon reservoir is relatively stable. However, climate warming is expected to upset that balance. The Spruce and Peatlands Responses Under Changing Environments is large-scale experimental warming of a Minnesota peatland designed to study these effects. We conducted radiocarbon analysis of the peat and the microbially produced CO2 and dissolved organic carbon in ambient and heated areas of the peatland and show that at warmer temperatures more of the ancient peat carbon is being mobilized and respired to CO2. This is troubling as it signifies a positive feedback loop wherein warming stimulates peat to produce more CO2 which further exacerbates climate change

    Assessing and aggregating trends in groundwater quality

    Get PDF

    Examination of Nutrient Sources and Transport in a Catchment with an Audubon Certified Golf Course

    No full text
    Water bodies in the East Bay Regional Park District (EBRPD), California, United States, provide aesthetic value and critical ecosystem services, but are often adversely affected by the activities and infrastructure of the intensely urban environment that surrounds the parks. EBRPD leases a golf course (Tilden Golf Course (TGC)) in Tilden Regional Park, one of its most popular parks located in the Berkeley Hills, which was certified as an Audubon Cooperative Sanctuary in 2013. Nonetheless, application of nutrients and pesticides (fungicides, plant growth regulators and herbicides) are commonly used to maintain turf systems and may be transported via surface runoff or through subsurface drainage to surface waters, leading to the concern that golf courses are a major contributor to water pollution. We studied the possible contribution of nutrients (NO3-N and PO4-P) and pesticides transported via storm-generated surface runoff and via groundwater from TGC to the primary drainage in the watershed, Wildcat Creek. Lake Anza, a popular open water swimming lake, is located downstream from TGC and experiences occasional nutrient-driven algal blooms that have caused swim beach closures. Measured NO3-N and PO4-P in the stream, at times, exceeded concentration limits of 1 mg/L (as N) and 0.05 mg/L (as P), respectively, considered protective of aquatic ecosystems by the United States Environmental Protection Agency (1986). We found that phosphorous likely has a dominant natural source, but nitrogen is primarily derived from a golf course fertilizer source and its concentration increases in the stream during runoff events, while other soluble species decrease. Analyses of pesticides in water reveal the presence of Azoxystrobin in stream water at the golf course, but with concentrations well below the regulatory limit. These results indicate that all other pesticides applied on TGC are not likely transported to the stream, suggesting future reactive transport research must treat contaminant species independently based on their specific transport behaviors

    A Bayesian modeling approach for estimation of a shape-free groundwater age distribution using multiple tracers

    No full text
    Due to the mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the distribution and the parameters of the mathematical distribution are estimated using deterministic or stochastic inverse methods. The prescription of the mathematical form limits the exploration of the age distribution to the shapes that can be described by the selected distribution. In this paper, the use of freeform histograms as groundwater age distributions is evaluated. A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of groundwater in each histogram bin. The method was able to capture the shape of a hypothetical gamma distribution from the concentrations of four age tracers. The number of bins that can be considered in this approach is limited based on the number of tracers available. The histogram method was also tested on tracer data sets from Holten (The Netherlands; 3H, 3He, 85Kr, 39Ar) and the La Selva Biological Station (Costa-Rica; SF6, CFCs, 3H, 4He and 14C), and compared to a number of mathematical forms. According to standard Bayesian measures of model goodness, the best mathematical distribution performs better than the histogram distributions in terms of the ability to capture the observed tracer data relative to their complexity. Among the histogram distributions, the four bin histogram performs better in most of the cases. The Monte Carlo simulations showed strong correlations in the posterior estimates of bin contributions, indicating that these bins cannot be well constrained using the available age tracers. The fact that mathematical forms overall perform better than the freeform histogram does not undermine the benefit of the freeform approach, especially for the cases where a larger amount of observed data is available and when the real groundwater distribution is more complex than can be represented by simple mathematical forms
    corecore