15 research outputs found

    Mycetoma Caused by Actinomadura (Streptomyces) madurae

    Get PDF
    The actinomycete Actinomadura madurae has been isolated for the first time in South Africa from a case of mycetoma pedis. A. madurae and A. pelletieri are two closely related though separate pathogens which were formerly regarded as species of Nocardia and Streptomyces, and are now placed in a newly created genus Actinomadura. They have been isolated from river water by Transvaal botanists and by us from clinical cases of mycetoma. Irrigated soil possibly serves as a habitat selecting for pathogenicity in man. Surgery can be postponed or possibly avoided by correct identification of the causative agent and appropriate chemotherapy in the case of A. madurae infection.S. Afr. Med. J. 48, 433 (1974

    Mycotoxicological research in South Africa 1910-2011

    No full text
    NatuurwetenskappeBiochemiePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    History and Relevance of Fumonisins

    No full text
    NatuurwetenskappeBiochemiePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Fumonisin Contamination and Fusarium Incidence in Corn from Santa Catarina, Brazil

    No full text
    In Brazil, the southern region has the highest incidence of esophageal cancer and also the highest production and consumption of corn (Zea mays) products. Corn samples intended for human consumption from the western, northern, and southern regions of the state of Santa Catarina, southern Brazil, had mean total fumonisin B (B1, B2, and B3) levels of 3.2, 3.4, and 1.7 mg/kg, respectively. Fusarium verticillioides, the predominant fungus in the corn samples, had mean incidences (percent of kernels infected) of 14, 11, and 18% for the three regions, respectively. Additional corn samples intended for animal feed from the southern region had a mean total fumonisin level of 1.5 mg/kg and a mean F. verticillioides incidence of 10%. The fumonisin levels in corn from the state of Santa Catarina, Brazil, were similar to the high levels determined in other high esophageal cancer incidence regions of the world

    Fusarium inhibition by wild populations of the medicinal plant Salvia africana-lutea L. linked to metabolomic profiling

    No full text
    Background: Salvia africana-lutea L., an important medicinal sage used in the Western Cape (South Africa), can be termed a ‘broad-spectrum remedy’ suggesting the presence of a multiplicity of bioactive metabolites. This study aimed at assessing wild S. africana-lutea populations for chemotypic variation and anti-Fusarium properties. Methods: Samples were collected from four wild growing population sites (Yzerfontein, Silwerstroomstrand, Koeberg and Brackenfell) and one garden growing location in Stellenbosch. Their antifungal activities against Fusarium verticillioides (strains: MRC 826 and MRC 8267) and F. proliferatum (strains: MRC 6908 and MRC 7140) that are aggressive mycotoxigenic phytopathogens were compared using an in vitro microdilution assay. To correlate antifungal activity to chemical profiles, three techniques viz. Gas chromatography-mass spectrometry (GC-MS); Liquid chromatography-mass spectrometry (LC-MS) and 1 H Nuclear Magnetic Resonance (NMR) were employed. Principal Component Analysis (PCA) was applied to the NMR data. The partial least squares-discriminant analysis (PLS-DA) was used to integrate LC-MS and NMR data sets. All statistics were performed with the SIMCA-P + 12.0 software. Results: The dichloromethane:methanol (1:1; v/v) extracts of the plant species collected from Stellenbosch demonstrated the strongest inhibition of F. verticillioides and F. proliferatum with minimum inhibitory concentration (MIC) values of 0.031 mg ml-1 and 0.063 mg ml-1 respectively. GC-MS showed four compounds which were unique to the Stellenbosch extracts. By integrating LC-MS and 1 H NMR analyses, large chemotype differences leading to samples grouping by site when a multivariate analysis was performed, suggested strong plant-environment interactions as factors influencing metabolite composition. Signals distinguishing the Stellenbosch profile were in the aromatic part of the 1 H NMR spectra. Conclusions: This study shows the potential of chemotypes of Salvia africana-lutea in controlling fungal growth and consequently mycotoxin production. Products for use in the agricultural sector may be developed from such chemotypes

    A dimorphic fungus causing disseminated infection in South Africa

    No full text
    Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.Journal Articles (subsidised)Geneeskunde en GesondheidswetenskappeGeneeskundige Mikrobiologi
    corecore