7 research outputs found

    A systematic study of the valence electronic structure of cyclo(Gly–Phe), cyclo(Trp–Tyr) and cyclo(Trp–Trp) dipeptides in the gas phase

    Get PDF
    The electronic energy levels of cyclo(glycine–phenylalanine), cyclo(tryptophan–tyrosine) and cyclo(tryptophan–tryptophan) dipeptides are investigated with a joint experimental and theoretical approach. Experimentally, valence photoelectron spectra in the gas phase are measured using VUV radiation. Theoretically, we first obtain low-energy conformers through an automated conformer–rotamer ensemble sampling scheme based on tight-binding simulations. Then, different first principles computational schemes are considered to simulate the spectra: Hartree–Fock (HF), density functional theory (DFT) within the B3LYP approximation, the quasi-particle GW correction, and the quantumchemistry CCSD method. Theory allows assignment of the main features of the spectra. A discussion on the role of electronic correlation is provided, by comparing computationally cheaper DFT scheme (and GW) results with the accurate CCSD method

    Spatial aberrations in high-order harmonic generation

    Full text link
    We investigate the spatial characteristics of high-order harmonic radiation generated in argon, and observe cross-like patterns in the far field. An analytical model describing harmonics from an astigmatic driving beam reveals that these patterns result from the order and generation position dependent divergence of harmonics. Even small amounts of driving field astigmatism may result in cross-like patterns, coming from the superposition of individual harmonics with spatial profiles elongated in different directions. By correcting the aberrations using a deformable mirror, we show that fine-tuning the driving wavefront is essential for optimal spatial quality of the harmonics

    Electron and ion spectroscopy of Azobenzene in the valence and core shells

    Get PDF
    Azobenzene is a prototype and building block of a class of molecules of extreme technological interest as molecularphoto-switches. We present a joint experimental and theoretical study of its response to irradiation with light across theUV to X-ray spectrum. The study of valence and inner shell photo-ionization and excitation processes, combined withmeasurement of valence photoelectron-photoion coincidence (PEPICO) and of mass spectra across the core thresholdsprovides a detailed insight onto the site- and state-selected photo-induced processes. Photo-ionization and excita-tion measurements are interpreted via the multi-configurational restricted active space self-consistent field (RASSCF)method corrected by second order perturbation theory (RASPT2). Using static modelling, we demonstrate that thecarbon and nitrogen K edges of Azobenzene are suitable candidates for exploring its photoinduced dynamics thanks tothe transient signals appearing in background-free regions of the NEXAFS and XP

    First report of Echinococcus granulosus sensu lato genotype G6/G7 in domestic pigs from mainland Italy

    No full text
    Cystic echinococcosis (CE; Echinococcus spp.) is widespread in many domestic animal species in Italy, with the G1-G3 genotype predominating. The G7 genotype (“pig strain”), which is much less common, has only been reported in pigs and wild boar from the island of Sardinia and in wild boars from southern mainland Italy. Ten pig livers with hydatid cysts were identified in a slaughterhouse in northwestern Italy. Multiplex PCR for Echinococcus granulosus gave positive results for two of these and subsequent sequencing confirmed the species as Echinococcus granulosusu s.l. G6/G7. Affected pigs came from an intensive farm in northeastern Italy. This is, to the authors’ knowledge, the first report of CE by Echinococcus granulosusu s.l. G6/G7 in the domestic pig in mainland Italy. E. granulosus s.l. G6/G7 is zoonotic and its circulation in Italy should be of concern for public healt

    Controlling Floquet states on ultrashort time scales

    Get PDF
    The advent of ultrafast laser science offers the unique opportunity to combine Floquet engineering with extreme time resolution, further pushing the optical control of matter into the petahertz domain. However, what is the shortest driving pulse for which Floquet states can be realised remains an unsolved matter, thus limiting the application of Floquet theory to pulses composed by many optical cycles. Here we ionized Ne atoms with few-femtosecond pulses of selected time duration and show that a Floquet state can be observed already with a driving field that lasts for only 10 cycles. For shorter pulses, down to 2 cycles, the finite lifetime of the driven state can still be explained using an analytical model based on Floquet theory. By demonstrating that the amplitude and number of Floquet-like sidebands in the photoelectron spectrum can be controlled not only with the driving laser pulse intensity and frequency, but also by its duration, our results add a new lever to the toolbox of Floquet engineering
    corecore