9 research outputs found
Recommended from our members
Genomic and phenotypic analysis of Vavilov's historic landraces reveals the impact of environment and genomic islands of agronomic traits.
The Vavilov Institute of Plant Genetic Resources (VIR), in St. Petersburg, Russia, houses a unique genebank, with historical collections of landraces. When they were collected, the geographical distribution and genetic diversity of most crops closely reflected their historical patterns of cultivation established over the preceding millennia. We employed a combination of genomics, computational biology and phenotyping to characterize VIR's 147 chickpea accessions from Turkey and Ethiopia, representing chickpea's center of origin and a major location of secondary diversity. Genotyping by sequencing identified 14,059 segregating polymorphisms and genome-wide association studies revealed 28 GWAS hits in potential candidate genes likely to affect traits of agricultural importance. The proportion of polymorphisms shared among accessions is a strong predictor of phenotypic resemblance, and of environmental similarity between historical sampling sites. We found that 20 out of 28 polymorphisms, associated with multiple traits, including days to maturity, plant phenology, and yield-related traits such as pod number, localized to chromosome 4. We hypothesize that selection and introgression via inadvertent hybridization between more and less advanced morphotypes might have resulted in agricultural improvement genes being aggregated to genomic 'agro islands', and in genotype-to-phenotype relationships resembling widespread pleiotropy
Geographical gradient of the <em>eIF4E</em> alleles conferring resistance to potyviruses in pea (<em>Pisum</em>) germplasm
<div><p>Background</p><p>The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the <i>eIF4E</i> gene to identify novel genetic diversity.</p><p>Methodology/Principal findings</p><p>Germplasm of 2803 pea accessions was screened for <i>eIF4E</i> intron 3 length polymorphism, resulting in the detection of four <i>eIF4E<sup>A-B-C-S</sup></i> variants, whose distribution was geographically structured. The <i>eIF4E<sup>A</sup></i> variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, <i>eIF4E<sup>B</sup></i>, was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The <i>eIF4E<sup>C</sup></i> variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The <i>eIF4E<sup>S</sup></i> variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (<i>eIF4E<sup>A-1-2-3-4-5-6-7</sup></i>, <i>eIF4E<sup>B-1</sup></i>, <i>eIF4E<sup>C-2</sup></i>) conferred resistance to the P1 PSbMV pathotype.</p><p>Conclusions/Significance</p><p>This work identified novel <i>eIF4E</i> alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible <i>eIF4E<sup>S1</sup></i> allele. Despite high variation present in wild <i>Pisum</i> accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis to study the co-evolution of potyviruses and the pea host.</p></div
Drought Stress Response in Guar (<i>Cyamopsis tetragonoloba</i> (L.) Taub): Physiological and Molecular Genetic Aspects
Drought has become one of the main factors of crop yield losses worldwide. This negatively affects the plant industry, decreasing crop yields, and it may result in resource deficits in different sectors of the world economy and its national branches. Guar (Cyamopsis tetragonoloba (L.) Taub) represents one of the strategic crops, as its seeds are the source of guar gum, which is critically important in the modern oil industry. Although guar is generally known to be a drought-tolerant plant, it is known that soil dehydration negatively affects plant fitness and crop productivity. As guar genotypes are characterized by high variability in the manifestation of drought tolerance, screening genetic resources for this feature seems to be a promising strategy for accessing drought-resistant varieties. The discovery of drought-tolerant genotypes is mandatory to secure sustainable guar production. In this context, the identification of reliable chemical and molecular markers of drought tolerance (i.e., drought-responsive and/or drought-protective metabolites, proteins and transcripts) will provide the solid basis for marker-driven breeding of new tolerant varieties. Therefore, here we provide a comprehensive overview of the available literature data on guar drought stress response, its physiological and molecular genetic aspects, and considerations on the approaches to improve the quality of this crop
Recommended from our members
Historical Routes for Diversification of Domesticated Chickpea Inferred from Landrace Genomics
According to archaeological records, chickpea (Cicer arietinum) was first domesticated in the Fertile Crescent about 10,000 years BP. Its subsequent diversification in Middle East, South Asia, Ethiopia, and the Western Mediterranean, however, remains obscure and cannot be resolved using only archeological and historical evidence. Moreover, chickpea has two market types: "desi" and "kabuli," for which the geographic origin is a matter of debate. To decipher chickpea history, we took the genetic data from 421 chickpea landraces unaffected by the green revolution and tested complex historical hypotheses of chickpea migration and admixture on two hierarchical spatial levels: within and between major regions of cultivation. For chickpea migration within regions, we developed popdisp, a Bayesian model of population dispersal from a regional representative center toward the sampling sites that considers geographical proximities between sites. This method confirmed that chickpea spreads within each geographical region along optimal geographical routes rather than by simple diffusion and estimated representative allele frequencies for each region. For chickpea migration between regions, we developed another model, migadmi, that takes allele frequencies of populations and evaluates multiple and nested admixture events. Applying this model to desi populations, we found both Indian and Middle Eastern traces in Ethiopian chickpea, suggesting the presence of a seaway from South Asia to Ethiopia. As for the origin of kabuli chickpeas, we found significant evidence for its origin from Turkey rather than Central Asia
Recommended from our members
Genomic and phenotypic analysis of Vavilov's historic landraces reveals the impact of environment and genomic islands of agronomic traits.
The Vavilov Institute of Plant Genetic Resources (VIR), in St. Petersburg, Russia, houses a unique genebank, with historical collections of landraces. When they were collected, the geographical distribution and genetic diversity of most crops closely reflected their historical patterns of cultivation established over the preceding millennia. We employed a combination of genomics, computational biology and phenotyping to characterize VIR's 147 chickpea accessions from Turkey and Ethiopia, representing chickpea's center of origin and a major location of secondary diversity. Genotyping by sequencing identified 14,059 segregating polymorphisms and genome-wide association studies revealed 28 GWAS hits in potential candidate genes likely to affect traits of agricultural importance. The proportion of polymorphisms shared among accessions is a strong predictor of phenotypic resemblance, and of environmental similarity between historical sampling sites. We found that 20 out of 28 polymorphisms, associated with multiple traits, including days to maturity, plant phenology, and yield-related traits such as pod number, localized to chromosome 4. We hypothesize that selection and introgression via inadvertent hybridization between more and less advanced morphotypes might have resulted in agricultural improvement genes being aggregated to genomic 'agro islands', and in genotype-to-phenotype relationships resembling widespread pleiotropy
Recommended from our members
Genomic Analysis of Vavilov’s Historic Chickpea Landraces Reveals Footprints of Environmental and Human Selection
A defining challenge of the 21st century is meeting the nutritional demands of the growing human population, under a scenario of limited land and water resources and under the specter of climate change. The Vavilov seed bank contains numerous landraces collected nearly a hundred years ago, and thus may contain 'genetic gems' with the potential to enhance modern breeding efforts. Here, we analyze 407 landraces, sampled from major historic centers of chickpea cultivation and secondary diversification. Genome-Wide Association Studies (GWAS) conducted on both phenotypic traits and bioclimatic variables at landraces sampling sites as extended phenotypes resulted in 84 GWAS hits associated to various regions. The novel haploblock-based test identified haploblocks enriched for single nucleotide polymorphisms (SNPs) associated with phenotypes and bioclimatic variables. Subsequent bi-clustering of traits sharing enriched haploblocks underscored both non-random distribution of SNPs among several haploblocks and their association with multiple traits. We hypothesize that these clusters of pleiotropic SNPs represent co-adapted genetic complexes to a range of environmental conditions that chickpea experienced during domestication and subsequent geographic radiation. Linking genetic variation to phenotypic data and a wealth of historic information preserved in historic seed banks are the keys for genome-based and environment-informed breeding intensification
Rhizobacteria Mitigate the Negative Effect of Aluminum on Pea Growth by Immobilizing the Toxicant and Modulating Root Exudation
High soil acidity is one of the main unfavorable soil factors that inhibit the growth and mineral nutrition of plants. This is largely due to the toxicity of aluminum (Al), the mobility of which increases significantly in acidic soils. Symbiotic microorganisms have a wide range of beneficial properties for plants, protecting them against abiotic stress factors. This report describes the mechanisms of positive effects of plant growth-promoting rhizobacteria Pseudomonas fluorescens SPB2137 on four pea (Pisum sativum L.) genotypes grown in hydroponics and treated with 80 µM AlCl3. In batch culture, the bacteria produced auxins, possessed 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, alkalized the medium and immobilized Al, forming biofilm-like structures and insoluble phosphates. Inoculation with Ps. fluorescens SPB2137 increased root and/or shoot biomass of Al-treated plants. The bacteria alkalized the nutrient solution and transferred Al from the solution to the residue, which contained phosphorus that was exuded by roots. As a result, the Al concentration in roots decreased, while the amount of precipitated Al correlated negatively with its concentration in the solution, positively with the solution pH and negatively with Al concentration in roots and shoots. Treatment with Al induced root exudation of organic acids, amino acids and sugars. The bacteria modulated root exudation via utilization and/or stimulation processes. The effects of Al and bacteria on plants varied depending on pea genotype, but all the effects had a positive direction and the variability was mostly quantitative. Thus, Ps. fluorescens SPB2137 improved the Al tolerance of pea due to immobilization and exclusion of toxicants from the root zone