46 research outputs found
Strain-dependent variations in stress coping behavior are mediated by a 5-HT/GABA interaction within the prefrontal corticolimbic system
Background: Serotonin and Îł- Aminobutyric acid (GABA) transmission is crucial in coping strategies. Methods: Here, using mice from 2 inbred strains widely exploited in behavioral neurochemistry, we investigated whether serotonin transmission in medial prefrontal cortex and GABA in basolateral amygdala determine strain-dependent liability to stress response and differences in coping. Results: C57BL/6J mice displayed greater immobility in the forced swimming test, higher serotonin outflow in medial prefrontal cortex, higher GABA outflow in basolateral amygdala induced by stress, and higher serotonin 1A receptor levels in medial prefrontal cortex accompanied by lower GABAb receptor levels in basolateral amygdala than DBA/2J mice. In assessing whether serotonin in medial prefrontal cortex determines GABA functioning in response to stress and passive coping behavior in C57BL/6J and DBA/2J mice, we observed that selective prefrontal serotonin depletion in C57BL/6J and DBA/2J reduced stress-induced GABA outflow in basolateral amygdala and immobility in the forced swimming test. Conclusions: These results show that strain-dependent prefrontal corticolimbic serotonin/GABA regulation determines the strain differences in stress-coping behavior in the forced swimming test and point to a role of a specific neuronal system in genetic susceptibility to stress that opens up new prospects for innovative therapies for stress disorders
Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs
Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/ FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage
Social threat exposure in juvenile mice promotes cocaine-seeking by altering blood clotting and brain vasculature
Childhood maltreatment is associated with increased severity of substance use disorder and frequent relapse to drug
use following abstinence. However, the molecular and neurobiological substrates that are engaged during early traumatic
events and mediate the greater risk of relapse are poorly understood and knowledge of risk factors is to date extremely
limited. In this study, we modeled childhood maltreatment by exposing juvenile mice to a threatening social
experience (social stressed, S-S). We showed that S-S experience influenced the propensity to reinstate cocaineseeking
after periods of withdrawal in adulthood. By exploring global gene expression in blood leukocytes we found that
this behavioral phenotype was associated with greater blood coagulation. In parallel, impairments in brain
microvasculature were observed in S-S mice. Furthermore, treatment with an anticoagulant agent during withdrawal
abolished the susceptibility to reinstate cocaine-seeking in S-S mice. These findings provide novel insights into a
possible molecular mechanism by which childhood maltreatment heightens the risk for relapse in cocaine-dependent
individuals
Intermittent theta-burst stimulation rescues dopamine-dependent corticostriatal synaptic plasticity and motor behavior in experimental parkinsonism. Possible role of glial activity.
Background: Recent studies support the therapeutic utility of repetitive transcranial magnetic stimulation in Parkinson's disease (PD), whose progression is correlated with loss of corticostriatal long-term potentiation and long-term depression. Glial cell activation is also a feature of PD that is gaining increasing attention in the field because astrocytes play a role in chronic neuroinflammatory responses but are also able to manage dopamine (DA) levels.
Methods: Intermittent theta-burst stimulation protocol was applied to study the effect of therapeutic neuromodulation on striatal DA levels measured by means of in vivo microdialysis in 6-hydroxydopamine-hemilesioned rats. Effects on corticostriatal synaptic plasticity were studied through in vitro intracellular and whole-cell patch clamp recordings while stepping test and CatWalk were used to test motor behavior. Immunohistochemical analyses were performed to analyze morphological changes in neurons and glial cells.
Results: Acute theta-burst stimulation induced an increase in striatal DA levels in hemiparkinsonian rats, 80 minutes post-treatment, correlated with full recovery of plasticity and amelioration of motor performances. With the same timing, immediate early gene activation was restricted to striatal spiny neurons. Intense astrocytic and microglial responses were also significantly reduced 80 minutes following theta-burst stimulation.
Conclusion: Taken together, these results provide a first glimpse on physiological adaptations that occur in the parkinsonian striatum following intermittent theta-burst stimulation and may help to disclose the real potential of this technique in treating PD and preventing DA replacement therapy-associated disturbances
From traumatic childhood to cocaine abuse: the critical function of the immune system
Background: Experiencing traumatic childhood is a risk factor for developing substance use disorder (SUD), but the mechanisms that underlie this relationship have not been determined. Adverse childhood experiences affect the immune system and the immune system mediates the effects of psychostimulants. However, whether this system is involved in the etiology of SUD in individuals who have experience early life stress is unknown. Methods:In this study, we performed a series of ex vivo and in vivo experiments in mice and humans to define the function of the immune system in the early-life stress-induced susceptibility to the neurobehavioral effects of cocaine. Results: We provide evidence that exposure to social-stress (S-S) at an early age permanently sensitizes the peripheral (splenocytes) and brain (microglia) immune responses to cocaine in mice. In the brain, microglial activation in the ventral tegmental area (VTA) of S-S mice was associated with functional alterations in dopaminergic neurotransmission, as measured by whole-cell voltage clamp recordings in dopamine (DA) neurons. Notably, preventing immune activation during the S-S exposure reverted the effects of DA in the VTA and the cocaine-induced behavioral phenotype to control levels. In humans, cocaine modulated Toll-like receptor 4-mediated innate immunity, an effect that was enhanced in cocaine addicts who had experienced a difficult childhood. Conclusions Collectively, our findings demonstrate that sensitization to cocaine in early-life-stressed individuals involves brain and peripheral immune responses and that this mechanism is shared between mice and humans
Differential expression of paralog RNA binding proteins establishes a dynamic splicing program required for normal cerebral cortex development
: sam68 and SLM2 are paralog RNA binding proteins (RBPs) expressed in the cerebral cortex and display similar splicing activities. however, their relative functions during cortical development are unknown. we found that these RBPs exhibit an opposite expression pattern during development. sam68 expression declines postnatally while SLM2 increases after birth, and this developmental pattern is reinforced by hierarchical control of sam68 expression by SLM2. analysis of sam68:Slm2 double knockout (Sam68:Slm2dko) mice revealed hundreds of exons that respond to joint depletion of these proteins. moreover, parallel analysis of single and double knockout cortices indicated that exons regulated mainly by SLM2 are characterized by a dynamic splicing pattern during development, whereas sam68-dependent exons are spliced at relatively constant rates. dynamic splicing of SLM2-sensitive exons is completely suppressed in the sam68:Slm2dko developing cortex. sam68:Slm2dko mice die perinatally with defects in neurogenesis and in neuronal differentiation, and develop a hydrocephalus, consistent with splicing alterations in genes related to these biological processes. thus, our study reveals that developmental control of separate sam68 and Slm2 paralog genes encoding homologous RBPs enables the orchestration of a dynamic splicing program needed for brain development and viability, while ensuring a robust redundant mechanism that supports proper cortical development
Hemicerebellectomy.
Hemicerebellectomy (HCB) is characterized by ablation of half of the vermis with one cerebellar hemisphere, including the deep cerebellar nuclei, while sparing the vestibular nuclei and all surrounding structures. This approach has been adopted widely by many groups mainly in rats in various contexts of research. The purpose of this chapter is to review old and recent data focusing on morphological as well as functional data obtained in this model in addressing cerebellar function and brain plasticity mechanisms
Early life stress-induced neuroinflammation and neurological disorders: a novel perspective for research
Early life stres
Dynamic Interactions between Tumor Cells and Brain Microvascular Endothelial Cells in Glioblastoma
GBM is the most aggressive brain tumor among adults. It is characterized by extensive vascularization, and its further growth and recurrence depend on the formation of new blood vessels. In GBM, tumor angiogenesis is a multi-step process involving the proliferation, migration and differentiation of BMECs under the stimulation of specific signals derived from the cancer cells through a wide variety of communication routes. In this review, we discuss the dynamic interaction between BMECs and tumor cells by providing evidence of how tumor cells hijack the BMECs for the formation of new vessels. Tumor cell–BMECs interplay involves multiple routes of communication, including soluble factors, such as chemokines and cytokines, direct cell–cell contact and extracellular vesicles that participate in and fuel this cooperation. We also describe how this interaction is able to modify the BMECs structure, metabolism and physiology in a way that favors tumor growth and invasiveness. Finally, we briefly reviewed the recent advances and the potential future implications of some high-throughput 3D models to better understanding the complexity of BMECs–tumor cell interaction