30 research outputs found

    Interaction between centromeric histone h3 variant and shugoshin

    Get PDF
    Precise and faithful segregation of chromosome segregation during mitosis depends on the ability of the cell to regulate chromosome bi-orientation on the mitotic spindle. Shugoshin (Sgo1), the protector of meiotic centromeric cohesin, is required for proper establishment of chromosome bi-orientation. Sgo1 plays a crucial role as part of a mitotic tension sensor between sister chromatids. Recently, Sgo1 has been reported to interact with histone H3 at the pericentromere region, as an important factor for tension sensing and chromosome segregation. However, the role of Sgo1 in tension sensing at centromere is still elusive. The centromere is the region of attachment of chromatin fiber to mitotic spindle via the kinetochore and these structures assist in segregation of chromosomes to opposite spindle poles during mitosis. Cse4, budding yeast centromere specific histone variant, is thought to substitute histone H3 when assembling into a centromeric nucleosome. Cse4 plays key roles in kinetochore formation and proper chromosome segregation. Cse4 contains conserved C-terminal histone fold domain and unique 135-amino-acid N-terminal tail that extends from the nucleosome core making it accessible to interacting proteins and modification. To date, there is no evidence of a direct physical interaction reported between the Cse4 tail and the kinetochore or cell cycle related-proteins. In our study, we first established a direct interaction between the Cse4 N-terminal tail and Sgo1 by using an in vitro pull down assay. Sgo1 has a strong ability to associate with Cse4 tail, while it is not able to bind with another kinetochore protein tail, Cnn1, indicating the specificity of Sgo1-Cse4 interaction. From our kinetic binding study, interaction between Sgo1 and N-terminal tail of Cse4 has an equilibrium dissociation constant (KD) of approximately 33 nM. Moreover, we identified the minimal region on Cse4 tail (residue 49-65) that is sufficient for associating with Sgo1. Interestingly, part of this binding motif (residue 49-56) is conserved from present throughout eukaryotes. Furthermore, our pull down analysis and multiple sequence alignment analysis of Cse4 tail homologues suggest that there is an additional conserved motif, located within residues 95-102 of Cse4-tail, that is responsible for the Sgo1 interaction. In addition, an N-terminal proteolytic fragment of Sgo1 can interact with Cse4. The finding of the Sgo1 binding motifs, present in Cse4, suggests an attractive model in which the orthologous interaction is conserved in higher eukaryotes and this interaction could have an important role in tension sensing throughout the eukaryotic kingdom

    Eriodictyol Attenuates H<sub>2</sub>O<sub>2</sub>-Induced Oxidative Damage in Human Dermal Fibroblasts through Enhanced Capacity of Antioxidant Machinery

    No full text
    Oxidative stress in dermal fibroblasts is strongly correlated with the aging process of the skin. The application of natural compounds that can increase the ability of dermal fibroblasts to counteract oxidative stress is a promising approach to promote skin health and beauty. Eriodictyol is a flavonoid that exerts several pharmacological actions through its antioxidant properties. However, its protective effects on dermal fibroblasts have not yet been investigated. In this study, we investigated whether eriodictyol protects human dermal fibroblasts (BJ fibroblasts) from the harmful effects of hydrogen peroxide (H2O2). Eriodictyol pretreatment significantly prevented necrotic cell death caused by H2O2 exposure. In addition, the level of 2′,7′-dichloro-dihydro-fluorescein oxidation was decreased, and that of glutathione was maintained, indicating that the beneficial effects of eriodictyol against H2O2 were closely associated with oxidative-stress attenuation. Eriodictyol mediates its antioxidant effects on dermal fibroblasts against H2O2 through (i) the direct neutralization of reactive oxygen species; (ii) the enhancement of the activities of H2O2-detoxifying enzymes, including catalase and glutathione peroxidase; and (iii) the induction of the expressions of catalase and glutathione peroxidase 1 via the activation of the Nrf2 signaling system. These results support the potential application of eriodictyol as an ingredient in skincare products for cosmeceutical and pharmaceutical purposes

    Protective Effect of Lusianthridin on Hemin-Induced Low-Density Lipoprotein Oxidation

    No full text
    Oxidation of low-density lipoprotein (LDL) plays a crucial role in the pathogenesis of atherosclerosis. Hemin (iron (III)-protoporphyrin IX) is a degradation product of hemoglobin that can be found in thalassemia patients. Hemin is a strong oxidant that can cause LDL oxidation and contributes to atherosclerosis in thalassemia patients. Lusianthridin from Dendrobium venustrum is a phenolic compound that possesses antioxidant activity. Hence, lusianthridin could be a promising compound to be used against hemin-induced oxidative stress. The major goal of this study is to evaluate the protective effect of lusianthridin on hemin-induced low-density lipoprotein oxidation (he-oxLDL). Here, various concentrations of lusianthridin (0.25, 0.5, 1, and 2 µM) were preincubated with LDL for 30 min, then 5 µM of hemin was added to initiate the oxidation, and oxidative parameters were measured at various times of incubation (0, 1, 3, 6, 12, 24 h). Lipid peroxidation of LDL was measured by thiobarbituric reactive substance (TBARs) assay and relative electrophoretic mobility (REM). The lipid composition of LDL was analyzed by using reverse-phase HPLC. Foam cell formation with he-oxLDL in RAW 264.7 macrophage cells was detected by Oil Red O staining. The results indicated that lusianthridin could inhibit TBARs formation, decrease REM, decrease oxidized lipid products, as well as preserve the level of cholesteryl arachidonate and cholesteryl linoleate. Moreover, He-oxLDL incubated with lusianthridin for 24 h can reduce the foam cell formation in RAW 264.7 macrophage cells. Taken together, lusianthridin could be a potential agent to be used to prevent atherosclerosis in thalassemia patients

    Antioxidant Activities and Protective Effects of Dendropachol, a New Bisbibenzyl Compound from <i>Dendrobium pachyglossum</i>, on Hydrogen Peroxide-Induced Oxidative Stress in HaCaT Keratinocytes

    No full text
    Five compounds including a new bisbibenzyl named dendropachol (1) and four known compounds (2–5) comprising 4,5-dihydroxy-2,3-dimethoxy-9,10-dihydrophenanthrene (2), gigantol (3), moscatilin (4) and 4,5,4′-trihydroxy-3,3′-dimethoxybibenzyl (5) were isolated from a methanolic extract of Dendrobium pachyglossum (Orchidaceae). The chemical structures of the isolated compounds were characterized by spectroscopic methods. Dendropachol (1) was investigated for its protective effects on hydrogen peroxide (H2O2)-induced oxidative stress in HaCaT keratinocytes. Compound 1 showed strong free radical scavenging compared to the positive control. For the cytoprotective effect, compound 1 increased the activities of GPx and CAT and the level of GSH but reduced intracellular reactive oxygen species (ROS) generation and accumulation. In addition, compound 1 significantly diminished the expression of p53, Bax, and cytochrome C proteins, decreased the activities of caspase-3 and caspase-9, and increased Bcl-2 protein. The results suggested that compound 1 exhibited antioxidant activities and protective effects in keratinocytes against oxidative stress induced by H2O2

    Antioxidant Activities and Protective Effects of Dendropachol, a New Bisbibenzyl Compound from Dendrobium pachyglossum, on Hydrogen Peroxide-Induced Oxidative Stress in HaCaT Keratinocytes

    No full text
    Five compounds including a new bisbibenzyl named dendropachol (1) and four known compounds (2–5) comprising 4,5-dihydroxy-2,3-dimethoxy-9,10-dihydrophenanthrene (2), gigantol (3), moscatilin (4) and 4,5,4′-trihydroxy-3,3′-dimethoxybibenzyl (5) were isolated from a methanolic extract of Dendrobium pachyglossum (Orchidaceae). The chemical structures of the isolated compounds were characterized by spectroscopic methods. Dendropachol (1) was investigated for its protective effects on hydrogen peroxide (H2O2)-induced oxidative stress in HaCaT keratinocytes. Compound 1 showed strong free radical scavenging compared to the positive control. For the cytoprotective effect, compound 1 increased the activities of GPx and CAT and the level of GSH but reduced intracellular reactive oxygen species (ROS) generation and accumulation. In addition, compound 1 significantly diminished the expression of p53, Bax, and cytochrome C proteins, decreased the activities of caspase-3 and caspase-9, and increased Bcl-2 protein. The results suggested that compound 1 exhibited antioxidant activities and protective effects in keratinocytes against oxidative stress induced by H2O2

    Pharmacological Ascorbate Elicits Anti-Cancer Activities against Non-Small Cell Lung Cancer through Hydrogen-Peroxide-Induced-DNA-Damage

    No full text
    Non-small cell lung cancer (NSCLC) poses a significant global health burden with unsatisfactory survival rates, despite advancements in diagnostic and therapeutic modalities. Novel therapeutic approaches are urgently required to improve patient outcomes. Pharmacological ascorbate (P-AscH−; ascorbate at millimolar concentration in plasma) emerged as a potential candidate for cancer therapy for recent decades. In this present study, we explore the anti-cancer effects of P-AscH− on NSCLC and elucidate its underlying mechanisms. P-AscH− treatment induces formation of cellular oxidative distress; disrupts cellular bioenergetics; and leads to induction of apoptotic cell death and ultimately reduction in clonogenic survival. Remarkably, DNA and DNA damage response machineries are identified as vulnerable targets for P-AscH− in NSCLC therapy. Treatments with P-AscH− increase the formation of DNA damage and replication stress markers while inducing mislocalization of DNA repair machineries. The cytotoxic and genotoxic effects of P-AscH− on NSCLC were reversed by co-treatment with catalase, highlighting the roles of extracellular hydrogen peroxide in anti-cancer activities of P-AscH−. The data from this current research advance our understanding of P-AscH− in cancer treatment and support its potential clinical use as a therapeutic option for NSCLC therapy

    Anti-Inflammatory Activity of Oxyresveratrol Tetraacetate, an Ester Prodrug of Oxyresveratrol, on Lipopolysaccharide-Stimulated RAW264.7 Macrophage Cells

    No full text
    Oxyresveratrol (OXY) has been reported for its anti-inflammatory activity; however, the pharmaceutical applications of this compound are limited by its physicochemical properties and poor pharmacokinetic profiles. The use of an ester prodrug is a promising strategy to overcome these obstacles. In previous researches, several carboxylate esters of OXY were synthesized and oxyresveratrol tetraacetate (OXY-TAc) was reported to possess anti-melanogenic and anti-skin-aging properties. In this study, in addition to OXY-TAc, two novel ester prodrugs of OXY, oxyresveratrol tetrapropionate (OXY-TPr), and oxyresveratrol tetrabutyrate (OXY-TBu), were synthesized. Results from the Caco-2-permeation assay suggested that synthesized ester prodrugs can improve the membrane-permeation ability of OXY. The OXY-TAc exhibited the most significant profile, then this prodrug was chosen to observe anti-inflammatory activities with lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Our results showed that OXY-Tac significantly alleviated secretion of several pro-inflammatory mediators (nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-&alpha;)), mitigated expression of enzyme-regulated inflammation (inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)), and suppressed the MAPK cascades. Interestingly, the observed anti-inflammatory activities of OXY-TAc were more remarkable than those of its parent compound OXY. Taken together, we demonstrated that OXY-TAc improved physicochemical and pharmacokinetic profiles and enhanced the pharmacological effects of OXY. Hence, the results in the present study would strongly support the clinical utilities of OXY-TAc for the treatment of inflammation-related disorders

    Photooxidation and Virus Inactivation using TiO2(P25)–SiO2 Coated PET Film

    Get PDF
    This study chemically modified PET film surface with P25 using silicate as a binder. Different P25–binder ratios were optimized for the catalyst performance. The modified samples were analyzed by scanning electron microscopy-energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. Diffuse reflectance UV-vis spectra revealed significant reductions in the band gaps of the P25 solid precursor (3.20 eV) and the surface-modified PET–1.0Si–P25 (2.77 eV) with visible light. Accordingly, under visible light conditions, catalyst activity on the film will occur. Additionally, the film’s performance was evaluated using methylene blue (MB) degradation. Pseudo-first-order-rate constants (min−1), conversion percentages, and rates (µg.mL−1.gcat−1.h−1) were determined. The coated films were evaluated for viral Phi–X 174 inactivation and tested with fluorescence and UV-C light illumination, then log (N/N0) versus t plots (N = [virus] in plaque-forming units [PFUs]/mL) were obtained. The presence of nanosilica in PET showed a high adsorption ability in both MB and Phi–X 174, whereas the best performances with fluorescent light were obtained from PET–1.0Si–P25 and PET–P25–1.0Si–SiO2 equally. A 0.2-log virus reduction was obtained after 3 h at a rate of 4×106 PFU.mL−1.gcat−1.min−1. Additionally, the use of this film for preventing transmission by direct contact with surfaces and via indoor air was considered. Using UV light, the PET–1.0Si–P25 and PET–1.0Si–P25–SiO2 samples produced a 2.5-log inactivation after 6.5 min at a rate of 9.6×106 and 8.9×106 PFU.mL−1.gcat−1.min−1, respectively. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

    In Vivo Biocompatible Self-Assembled Nanogel Based on Hyaluronic Acid for Aqueous Solubility and Stability Enhancement of Asiatic Acid

    No full text
    Asiatic acid (AA), a natural triterpene found in Centalla asiatica, possesses polypharmacological properties that can contribute to the treatment and prophylaxis of various diseases. However, its hydrophobic nature and rapid metabolic rate lead to poor bioavailability. The aim of this research was to develop a thermoresponsive nanogel from hyaluronic acid (HA) for solubility and stability enhancement of AA. Poly(N-isopropylacrylamide) (pNIPAM) was conjugated onto HA using a carbodiimide reaction followed by 1H NMR characterization. pNIPAM-grafted HA (HA-pNIPAM) nanogels were prepared with three concentrations of polymer, 0.1, 0.15 and 0.25% w/v, in water by the sonication method. AA was loaded into the nanogel by the incubation method. Size, morphology, AA loading capacity and encapsulation efficiency (EE) were analyzed. In vitro cytocompatibility was evaluated in fibroblast L-929 cells using the PrestoBlue assay. Single-dose toxicity was studied using rats. HA-pNIPAM nanogels at a 4.88% grafting degree showed reversible thermo-responsive behavior. All nanogel formulations could significantly increase AA water solubility and the stability was higher in nanogels prepared with high polymer concentrations over 180 days. The cell culture study showed that 12.5 µM AA in nanogel formulations was considered non-toxic to the L-929 cells; however, a dose-dependent cytotoxic effect was observed at higher AA-loaded concentrations. In vivo study proved the non-toxic effect of AA loaded in HA-pNIPAM nanogels compared with the control. Taken together, HA-pNIPAM nanogel is a promising biocompatible delivery system both in vitro and in vivo for hydrophobic AA molecules

    Tumor cells have decreased ability to metabolize H2O2: Implications for pharmacological ascorbate in cancer therapy

    Get PDF
    Ascorbate (AscH−) functions as a versatile reducing agent. At pharmacological doses (P-AscH−; [plasma AscH−] ≥≈20 mM), achievable through intravenous delivery, oxidation of P-AscH− can produce a high flux of H2O2 in tumors. Catalase is the major enzyme for detoxifying high concentrations of H2O2. We hypothesize that sensitivity of tumor cells to P-AscH− compared to normal cells is due to their lower capacity to metabolize H2O2. Rate constants for removal of H2O2 (kcell) and catalase activities were determined for 15 tumor and 10 normal cell lines of various tissue types. A differential in the capacity of cells to remove H2O2 was revealed, with the average kcell for normal cells being twice that of tumor cells. The ED50 (50% clonogenic survival) of P-AscH− correlated directly with kcell and catalase activity. Catalase activity could present a promising indicator of which tumors may respond to P-AscH−
    corecore