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ABSTRACT

Ascorbate (AscH™) functions as a versatile reducing agent. At pharmacological doses (P-AscH™; [plasma AscH]
>~20 mM), achievable through intravenous delivery, oxidation of P-AscH™ can produce a high flux of H,O, in
tumors. Catalase is the major enzyme for detoxifying high concentrations of H,0,. We hypothesize that
sensitivity of tumor cells to P-AscH™ compared to normal cells is due to their lower capacity to metabolize H,O».
Rate constants for removal of H>O- (k1) and catalase activities were determined for 15 tumor and 10 normal
cell lines of various tissue types. A differential in the capacity of cells to remove H>O, was revealed, with the
average k.o for normal cells being twice that of tumor cells. The ED5q (50% clonogenic survival) of P-AscH™
correlated directly with k.. and catalase activity. Catalase activity could present a promising indicator of which
tumors may respond to P-AscH™.

1. Introduction

Ascorbate functions as a versatile reducing agent in biology. When
present at healthy physiological concentrations (40—-80 uM) it exhibits
antioxidant properties. It is essential in maintaining the function of
enzymes that have roles in cell signaling events, i.e. the prolyl
hydroxylases. When used at pharmacological doses (P-AscH™ plasma
levels >~20 mM),! which are well above those obtained through
healthy dietary intake and can be achieved only through intravenous
delivery, its oxidation can deliver a high flux of H>O, [1-4]. This
unique feature of P-AscH™ is currently being investigated for use as an
adjuvant to standard of care therapies for multiple cancers. Both in
vitro and in vivo studies have shown a differential toxicity of P-AscH™
across various cancer types and selective toxicity to cancer cells in
comparison to normal cells of the same tissue origin [1,3,5—13]. These
studies have implicated the H>O, produced from the oxidation of P-
AscH™ as the principal mediating factor in its cytotoxicity to cancer
cells. The differential sensitivity of cancer cells of different tissue types
to P-AscH™, as well as their increased sensitivity over normal cells may
be due to differences in their ability to remove H,0,, which is a
function of the activities of antioxidant enzymes that detoxify H,O».

While H»0, is a strong oxidant, it is not very reactive because of its
slow reaction kinetics with the majority of biomolecules. Thus, it can
accumulate to relatively high concentrations in cells and tissues. There
it can be activated to produce more reactive oxidants, such as
compound-I of heme peroxidases and hydroxyl free radicals. The
removal of excess H>O, by antioxidant enzymes is therefore central
in minimizing cellular damage. The principal enzymes responsible for
the elimination of H,O, are catalase, glutathione peroxidase (GPx), and
the peroxiredoxins (Prx) [14—17]. Kinetic models built using in vitro
data have demonstrated that catalase is the major enzyme involved in
the detoxification of high concentrations of H>0,, such as those that
result from the oxidation of P-AscH™ in the culture medium, whereas
GPx and the Prxs are responsible for removing low fluxes of H,O»
[16,18-26]. Catalase is largely localized to the peroxisomes of nu-
cleated mammalian cells where it catalyzes the decomposition of H>0»
into water and oxygen [27].

Biochemical studies of various tissues have shown that the en-
dogenous levels of antioxidant enzymes differ greatly across tissue
types [28]. It has been postulated that this reflects differences in
development and metabolism across different organ systems [29]. The
intrinsic levels of antioxidant enzymes are low in a majority of cancer
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cell types as compared to non-transformed cells [28—30]. Studies have
shown that all but one human cancer cell type, a human renal
adenocarcinoma, have low levels of both catalase and GPx [29]. This
suggests that the vast majority of cancer cells may lack the biochemical
machinery needed to detoxify higher fluxes of H>0- efficiently. While in
general, the levels of catalase are low in cancer cells, catalase activity
appears to vary greatly across different cancer cell lines [28]. This may
correspond to a differential capacity to remove H,O, and differential
sensitivity to H,O, -producing agents (i.e. P-AscH™). We hypothesize
that the sensitivity of tumor cells to P-AscH™ compared to normal cells
is due to their lower capacity to remove extracellular H,O,; across
different tumor cell types there will also be a differential sensitivity to
P-AscH™ that is correlated with their individual capacities to remove
extracellular H,O,, as reflected by k.o of H,O, removal and catalase
activity.

2. Methods
2.1. Cell lines

MIA PaCa-2, PANC-1, AsPC-1, MB231, A549, FHs74int and
HepG2 cells were purchased from American Type Culture Collection
(Manassas, VA). Two patient-derived cell lines, 339 and 403, were
obtained from Medical College of Wisconsin surgical oncology tissue
bank (Milwaukee, WT) [31,32]. A375, Cal27, FaDu, H292, H1299, U87,
U118, H6¢7, melanocytes, normal human fibroblasts (NHF; 12 and 46
years old), normal human astrocytes (NHA), and HBePC cells were
donated from neighboring labs and were only used in experiments to
determine their rate constant for H,O» removal. MIA PaCa-2, PANC-1,
MB231, A549, and HepG?2 cells were cultured in Dulbecco's modified
eagle medium (DMEM) with high glucose from Invitrogen (Grand
Island, NY), supplemented with 10% fetal bovine serum (FBS) and
penicillin (80 Units mL™)/streptomycin (80 ug mL™) at 37 °C, 5%
CO5. AsPC-1 cells were cultured in RPMI 1640 medium from
Invitrogen (Grand Island, NY), supplemented with 10% FBS and
penicillin (80 Units mL™")/streptomycin (80 pg mL™') at 37 °C, 5%
CO,. 339 and 403 cells were cultured in DMEM nutrient mixture F-12
(Ham) medium from Invitrogen (Grand Island, NY), supplemented
with 6% FBS, penicillin (80 Units mL™1)/streptomycin (80 ug mL™),
0.1% epidermal growth factor (EGF) human recombinant, 0.4% bovine
pituitary extract, 4% hydrocortisone, 0.014% insulin human recombi-
nant and GlutaMAX™ at 37°C, 5% CO,. Sufficient medium was
prepared to complete an experiment, including all replicates and
contained FBS from the same lot number to minimize variation
between experiments.

2.2. Measurement of ascorbate oxidation in cell culture medium with
Clark electrode oxygen monitor

The rate of oxygen consumption (OCR, -d[O-]/dt) upon addition of
ascorbate to DMEM cell culture medium complete with 10% FBS and
penicillin (80 Units mL’l)/streptomycin (80 pg mL™!) was determined
using a Clark electrode oxygen monitor (YSI Inc.) that is connected to
an ESA Biostat microelectrode system (ESA Products, Dionex Corp.).
The OCR represents the rate of H,O, production. The accumulation of
H,0, is determined with this system through the addition of catalase
(500 units mL™!) (bovine liver, Sigma C-1345).

2.3. H,0, removal assay: determination of rate constant by which
cells remove H>0»

The rate constant (k) for the removal of extracellular H,O> by
cells was determined for each of the different cell lines using the 96-
well plate reader assay [33]. Cells were seeded in rows E-G of a 96-well
plate at a density of 15,000 cells per well. Cells were then incubated for
48 h prior to the assay at 37°C, 5% CO, to return to a healthy
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exponential growth state. Briefly, extracellular H,O, (10 uM) was
added to wells at different times; the number of cells in the wells at
the time of exposure was verified. The cells removed this extracellular
H>0, over time. The system was then quenched at a predetermined
time and the concentration of extracellular H»O» remaining in the wells
was determined. The quenching solution contains horseradish perox-
idase (HRP) that reacts with the remaining H»O, in the wells. The
activated HRP then oxidizes para-hydroxyphenylacetic acid (pHPA)
resulting in the formation of the fluorescent pHPA dimer, providing the
readout of the amount of H,O, remaining in the wells. With this
method an observed ke of H,O» removal was determined on a per cell
basis, i.e. the capacity of cells to remove extracellular HoO (keep)-

2.4. Measurement of catalase activity

Catalase activity was measured in MB231, A549, HepG2, MIA
PaCa-2, AsPC-1, PANC-1, 403, and 339 cell lysates using a spectro-
photometric-based assay [34]. Briefly, cells (1.0-5.0x10°) were har-
vested in 200 pL phosphate buffered saline (PBS). Cells were counted
with the hemacytometer, so a well-defined number of cells was used in
the assay. After cell lysis via sonication, the cell lysate was diluted in
50 mM phosphate buffer (pH 7.0) and 30 mM H,0, was added to the
cell lysate in the cuvette to yield a final concentration of 10 mM H,0,.
The decomposition of H>,O, was followed by the decrease in absorbance
at 240 nm measured every 10 s for 2 min. The effective number of
active catalase monomers per cell was determined from the experi-
mental slope, k’, of a plot of In(absorbance due to H»0>) vs. time (s).
This experimental k’, the number of cells used for the assay, informa-
tion on all solution volumes and dilutions, along with the rate constant
k=1.1x10" M~ s7! for the catalytic rate constant for the reaction of
catalase monomer with H,O, [35-38] were used to determine the
number of catalase monomers per cell.

2.5. Inhibition of catalase with 3-Amino-1,2,4-triazole

Catalase was inhibited using 3-amino-1,2,4-triazole (3-AT). Cells
were treated with 20 mM 3-AT for 1 h at 37 °C, 5% CO,. Cells were
then washed 3 times with PBS to remove extracellular 3-AT prior to
being used for experiments described herein.

2.6. Transduction with adenovirus catalase

MIA PaCa-2 cells were plated 48 h prior to transduction. Complete
DMEM medium was removed and cells were washed 2 times with
serum-free DMEM medium. Cells were then transduced with adeno-
virus catalase (1x10° pfu mL™) for 24 h at desired MOI (i.e. 1, 5, 10,
25, 50, and 100 for experiments herein) in serum-free DMEM medium.
After 24 h, adenovirus catalase was removed and cells were washed
with complete DMEM medium prior to replacement with complete
DMEM medium for a 24-h incubation prior to being used for the
experiments described herein.

2.7. Exposure to ascorbate

MIA PaCa-2, AsPC-1, PANC-1, 339, and 403 cells were seeded into
multiple 60 mm? culture dishes at 250,000 cells per dish and were
cultured for 48 h at 37 °C, 5% CO,. One dish was used strictly for
calculating the initial dose in units of mol cell™X. To achieve this, prior
to exposure to ascorbate, cells were counted in this dish with a
hemocytometer; this number of total cells, which were present
immediately prior to exposure, was used to calculate the initial dose
in units of mol cell”!. Growth medium was exchanged with DMEM
high glucose medium with 10% FBS and penicillin (80 Units mL™1)/
streptomycin (80 ug mL™!) for all exposures to ascorbate. Subtle
changes in the exposure-medium can result in different rates of
oxidation of ascorbate and therefore differences in the flux of H»0»
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the cells are exposed to. For these studies, all cells were exposed in
DMEM high glucose medium with 10% FBS and penicillin (80 Units
mL™1)/streptomycin (80 ug mL™1). After the replacement with fresh
DMEM high glucose complete medium (3.0 mL), ascorbate was added
to medium to achieve exposures of 0—150 picomoles cell™ (pico =10~
12, abbreviation = pmol cell ™), i.e. 0-8 mM. For control experiments,
medium was replaced with fresh DMEM high glucose medium, but
cells were untreated. Cells were then incubated for 1 h at 37 °C, 5%
COz.

2.8. Clonogenic cell survival

To assess the cytotoxicity of exposure to P-AscH™, cells were plated
for a clonogenic assay following the 1-h exposure to ascorbate. The
exposure medium was removed, cells trypsinized and counted with a
hemocytometer and plated at a cell density of 500 cells in 3.0 mL of
medium in 60 mm? dishes. Plates were incubated for 11-14 days at
37°C, 5% CO,. After the growth period, cells were fixed with 70%
ethanol and stained with Coomassie Blue. Colonies were counted as a
grouping of 50 or more cells. The plating efficiency and surviving
fraction were determined; plating efficiency (PE) =(colonies counted/
cells plated)x100; survival fraction =(PE of treated sample / PE of
control)x100. From plots of clonogenic survival fraction vs. dose of
ascorbate, the Effective Dose for 50% clonogenic survival (EDsy) was
determined.

2.9. Measurement of intracellular ATP concentration

A cell suspension (100 pL, 50,000 cells) was added to each well in
an opaque-walled, 96-well plate. To this, 100 uL of reagent from an
ATP kit (Promega, CellTiterGlo) was added to lyse the cells and initiate
the luminescence reaction. After 10 min, luminescence was measured
on a microplate reader. ATP standard curves with concentrations
between 0 and 1000 uM were generated for each experiment. The
ATP concentration was determined from the corresponding standard
curve and converted to an intracellular concentration using the cell
number as counted on a hemocytometer; cell volume as measured with
the Moxi automated cell counter (ORFLO™).

2.10. Genomic DNA isolation and quantitative PCR (QPCR)

Genomic DNA was isolated using Blood & Cell Culture DNA Mini
Kit (Qiagen, Valencia, CA) as described by the manufacturer. Genomic
DNA isolation by this technique has been demonstrated to be suitable
for QPCR-based measurement of both nuclear DNA (nDNA) and
mitochondrial DNA (mtDNA) damage without a separate step for
mitochondrial DNA purification [39]. The QPCR analysis of DNA
damage is based on the principle that various types of DNA lesions
can slow or impede the progression of DNA polymerase. If equal
amounts of DNA from different biological samples are amplified under
identical PCR conditions, DNA with more damage will amplify to a
lesser extent than DNA with less damage. Hence, the amount of PCR
amplification is inversely proportional to lesion frequency within a
given DNA sample.

Prior to QPCR, concentrations of total cellular DNA were quantified
with the Implen Nanophotometer P-330 at 260 nm. QPCR was
performed in a 2720 Thermal Cycle (Applied Biosystems, Foster City,
CA) with LA PCR Kit, Version 2.1 (Clontech Laboratories, Mountain
View, CA). The total volume of reaction was 50 pL, containing 15 ng
(nDNA assay), or 5 ng (mtDNA assay) of total genomic DNA, 1X LA
PCR buffer IT (Mg>* plus), 400 uM dNTP mixture, 0.4 pM primers and
2.5 units of Takara LA Taq. The oligonucleotide primers used in this
study were prepared by Integrated DNA Technologies (Coralville, IA).
The primer nucleotide sequences were as presented in [39]. The
12.2 kb region of the DNA polymerase beta gene was used to study
nDNA lesions. The PCR conditions were: an initial denaturation at
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94 °C for 2 min followed by 26 cycles of denaturation at 94.5 °C for
25 s, primer extension at 68 °C for 13 min (for nDNA) or 20 cycles of
denaturation at 94 °C for 25 s, primer extension at 68 °C for 10 min
30 s (for mtDNA). A final extension at 72 °C was performed for 10 min
at the end of PCR cycle. Fifty-percent controls, containing half of the
amount of undamaged DNA, were used as a quality control for each
PCR to validate that PCR reaction had been terminated within
exponential phase. The PCR amplicons were quantified by fluorescence
measurement with Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen,
Carlsbad, CA) according to the manufacturer. The specificities of PCR
reactions were confirmed with agarose gel electrophoresis.
Mitochondrial DNA amplifications of each sample were normalized
with relative mitochondrial DNA copy number by standardizing to the
amplification of small mitochondrial fragment (220 bp). DNA lesion
frequencies were calculated as previously described [39-41], by the
formula A=—In (Ap/Act), where A= lesion frequency per fragment, Ap =
amplification of treatment, A, = amplification of control.

2.11. Animal experiments

Thirty-day-old athymic nude mice were obtained from Harlan
Sprague-Dawley (Indianapolis, IN). The nude mice protocol was
reviewed and approved by the Animal Care and Use Committee of
The University of Iowa. The animals were housed four to a cage and fed
a sterile commercial stock diet and tap water, ad libitum. Animals were
allowed to acclimate in the unit for one week before any manipulations
were performed. Each experimental group consisted of 4 mice, 2
tumors in each mouse. MIA PaCa-2 or PANC-1 human pancreatic
tumor cells (2x10%) were delivered subcutaneously into the flank
region of nude mice with a 1-mL tuberculin syringe equipped with a
25-gauge needle. The tumors were allowed to grow until they reached
between 3 mm and 4 mm in greatest dimension (2 weeks), at which
time the mice were randomized and treatment was initiated. This was
defined as day-1 of the experiment. Mice were treated with IP ascorbate
(4 g/kg) twice daily for two weeks. Tumors were measured on day 3, 7,
10, and 14 following first treatment with ascorbate. Tumor size was
measured using a digital caliper, and tumor volume was estimated
according to: tumor volume =Y2xLxW?, where L is the greatest
dimension of the tumor, and W is the dimension of the tumor in the
perpendicular direction [42]. Animals were euthanized by CO» asphyx-
iation when the tumors reached a predetermined size of 1000 mm?® or
at day-15.

2.12. Immunofluorescent staining of catalase in tumor tissue

Tumor samples were fixed with 4% paraformaldehyde at 4 °C
overnight. Dry OCT sections of tumor were washed with PBS before
blocking with 5% goat serum for 30 min at 20 °C. The tumor samples
were incubated with catalase antibody (1:50, abcam, ab16731) for 20 h
at 4 °C. An Alexa Fluor 488 nm goat anti-Rabbit (1:200) was used as
secondary antibody. DAPI was used to stain the cell nuclei. Tumor
tissue samples were examined with a confocal microscope (Zeiss LSM
710). The intensity of immunofluorescence was quantified using
ImagedJ.

2.13. Statistics

Statistical analysis was done using GraphPad Prism 6.04 software
(GraphPad Software, San Diego, CA). Statistical significance was
determined using two-tailed unpaired ¢- test (Fig. 1) and one-way
ANOVA with Tukey post-test (Fig. 7). Error bars indicate standard
error of the mean.
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Fig. 1. Normal cells have a more robust capacity to remove extracellular
H>05 than tumor cells. The rate constants, k., at which 10 normal cell lines and 15
cancer cell lines remove H>O, were measured (listed in Table 1). There was a wide range
of capacities for removal of H,O, across all cell types. On average, normal cells had a 2-
fold higher rate constant for the removal of H,O, than tumor cells (p < 0.05).

3. Results
3.1. Pharmacological ascorbate is oxidized in cell culture medium

Oxidation of P-AscH™ in both in vitro and in vivo settings generates
a flux of H,O» [2—-4]. This flux of H»0, is proposed to mediate the
cytotoxicity of P-AscH™ to cancer cells. The rate of oxygen consumption
(OCR, -d[0,]/dt) upon addition of P-AscH™ to DMEM cell culture
medium provides information on the flux of Hy0, [3,4]
(Supplementary Fig. S1). Addition of P-AscH™ (6.0 mM) to DMEM
cell culture medium complete with 10% FBS resulted in an increase in
the background rate of oxygen consumption rate of approximately
50 nmol L' s, which represents the rate of H,O, production from
the oxidation of ascorbate. Addition of catalase indicated an accumula-
tion of 18 uM H»05 in the medium over the course of an experiment
(Supplementary Fig. S1). In a typical experimental setting in which
125,000 cells were treated with 6.0 mM P-AscH™ in 3.0 mL of DMEM
medium, this would result in the cells being exposed to a 1.2 fmol cell ™
s7! flux of HyO,. The metabolic rate of oxygen consumption by low
passage MIA PaCa-2 cells is on the order of 40 amol cell ! s71 [43]. If
we assume that a generous 1% of this metabolic oxygen consumption
were to be converted to H,0, [44], then the metabolic rate of
production of H,0, would be 0.4 amol cell ! s7%, a very small fraction
(1%) of the flux generated by the oxidation of ascorbate in the
experiment. We have previously shown that the extracellular flux of
H,0, generated by the P-AscH in the medium will increase the
intracellular steady-state levels of H>O, [45].

3.2. Normal cells have higher capacities for the removal of H»0. in
comparison to tumor cells

Rate constants (keen, [33]) for removal of extracellular H,O, were
measured for multiple cancer cells and normal cells, representing a
variety of tissue types (i.e. skin, breast, pancreas, lung, tongue,
pharynx, liver, and intestine). Results showed that both cancer cells
and normal cells have a wide range of capacities to remove extracellular
H,0, (Table 1, Fig. 1). Overall there was an 11-fold difference in the
keen for the removal of HoO, when comparing the cell line with the
lowest keon (A375; 0.65x10712s7! cell™® L) to the cell line with the
highest keeq (normal human astrocytes; 7.3x10712s7! cell™! L). On
average normal cells have higher rate constants for removal of
extracellular H,0, in comparison to cancer cells, ke =5.5x10712 57!
cell™! L and 3.1x1072 57! cell™! L, respectively (Fig. 1). Even among
cancer cells from the same anatomical location, there was a consider-
able difference in ke for removal of extracellular H,O, (Table 1). For
example, MIA PaCa-2 cells have a small k.o (1.1x10712s71 cell™! L)
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Table 1
Rate Constants (kcen) for H>O» removal by tumor and normal cells.

Cell Line Cell type keen (10712571 cell ™1
L) (SEM)
Tumor
MIA PaCa-2 Pancreatic Cancer 1.1 (0.1)
AsPC-1 2.6 (0.9)
PANC-1 5.1 (1.1)
339 5.4 (0.7)
403 3.5(0.3)
A375 Melanoma 0.65 (0.21)
Cal27 Head and neck 2.3 (0.6)
FaDu cancer 2.3
HepG2 Liver Cancer 4.2 (0.6)
MB231 Breast Cancer 1
H292 Lung Cancer 3.0 (0.4)
H1299 3.7 (0.4)
A549 2.1 (0.3)
us7 Glioblastoma 4.8 (0.6)
U118 4.6 (0.3)
Normal
Hé6c7 Pancreas 3.7 (0.4)
Melanocytes Skin 6.3 (1.3)
Normal Human 5.9
Fibroblasts (12-y)
Normal Human 4.7 (0.8)
Fibroblast (46-y)
Normal Human Brain 6.8 (0.7)
Astrocytes (#1)
Normal Human 4.4 (0.3)
Astrocytes (#2)
Normal Human 7.3 (0.2)
Astrocytes (#3)
HBePC Lung 6.7 (0.6)
Red blood cells Blood 4.0
FHs74int Intestinal 4.9

while both the PANC-1 and 339 cells have large values for ke, 5.1x10™
12571 cell ™! L and 5.4x107'2 57! cell™! L, respectively (Table 1).

3.3. Catalase activity varies across tumor cell lines and plays a major
role in the removal of extracellular H,0»

Given the wide-range observed in the ability of different cancer cell
lines to remove H»0,, it is expected that the activities of antioxidant
enzymes involved in the metabolism of H,O, will also vary greatly.
Kinetic models indicate that catalase is the major antioxidant enzyme
involved in the removal of H,O, at concentrations greater than 10 uM,
leading us to investigate the catalase activity in the tumor cell lines
[21,22,24]. Similar to the observed variation in k. for removal of
H,0,, we observed that cancer cells of varying tissue origins exhibit a
wide range of catalase activity (Fig. 2A). This variation in the active
catalase monomers per cell was also observed across cell lines of the
same tissue type and was exemplified in the pancreatic cancer cell lines
investigated (Fig. 2A). As expected, the number of active catalase
monomers per cell correlated with the rate constants at which these cell
lines remove extracellular H>O, (Fig. 2B). Since catalase is the major
contributing enzyme in the removal of high concentrations of H,0,,
e.g. extracellular H,O,, it is not surprising that there is a strong
correlation (R? =0.88) between these two parameters in the cell lines.

The data presented in Fig. 2B show a saturation behavior. This is as
expected; if catalase levels in cells are high, then addition of more will
lead to only a small increase in the ability of cells to remove H,0,; but
if catalase levels are low, that same addition will lead to a relatively
large increase in the ability of cells to remove H,0,, as manifest in k.
A similar saturation behavior on the mitochondrial flux of superoxide
and rate of formation of H>O, has been observed as the levels of
MnSOD are varied in cells [46]. k.. also incorporates the effects of the
latency of catalase activity, whereas the results of the standard assay for
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Fig. 2. Catalase activity varies across cancer cell lines and correlates with the
rate constant for removal of H>05 (kcen). (A) Catalase activity for cell lines of
different tissue origins (i.e. pancreas (purple), breast (green), lung (red), and liver (blue))
were determined and used to calculate the effective number of fully active catalase
monomers per cell. This number varied 5-fold across the different cancer cell lines: from
101,000 monomers per cell (MIA PaCa-2) to 538,000 monomers per cell (339) (n =3-9,
error bars are standard error of the mean). (B) There is a strong correlation between the
rate constant at which these cell lines remove extracellular H,O, and the effective
number of fully active catalase molecules per cell (R? =0.88). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

catalase can overestimate the effective activity that may be present in
intact cells [47].

When catalase was inhibited using 3-amino-1,2,4-triazole (3-AT) in
HepG2 cells, which have a high basal level of catalase activity, there
was a 4.6-fold decrease in the rate constant at which these cells remove
extracellular H,O, (Fig. 3A). These results both suggest and support
the important role of catalase in the removal of high concentrations of
extracellular H,O,. The number of active catalase molecules per cell,
assessed from the measurement of catalase activity in HepG2 cells
following inhibition of catalase with 3-AT, decreased 4.6-fold
(Supplementary Fig. S2). This decrease in catalase activity mirrors
the decrease in the rate constant, k.., for extracellular H>O» removal
(Fig. 3A and Supplementary Fig. S2).

Conversely, MIA PaCa-2 cells, which have a very low basal capacity
to remove Hy05 (ke) and a markedly low catalase activity, were
transduced with varying amounts (multiplicity of infection; MOI) of
adenovirus catalase to produce sets of cells with a range of increased
catalase activity. Following transduction, the rate constant at which
these sets of MIA PaCa-2 cells remove H,O, increased 1.5- to 80-fold
(Supplementary Fig. S3A). The rate constants for the removal of H>O,
correlated directly with the resulting active catalase monomers per cell
(Fig. 3B).

3.4. Dose of pharmacological ascorbate is best specified on a per cell
basis

We have previously demonstrated that specifying applied dose of a
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Fig. 3. Catalase plays a major role in removal of H>O05. (A) Treatment of HepG2
cells with 100 pM buthionine sulfoximine (BSO) 24 h prior to the H>O»-removal assay to
inhibit glutathione synthesis did not result in any change in the rate constant by which
these cells remove H,0,. However, treatment of HepG2 cells with 20 mM 3-AT for 1 h to
inhibit catalase resulted in a four-fold decrease in the rate constant by which HepG2 cells
remove extracellular H,O» (n =4, error bars are standard error of the mean). (B) There is
a direct correlation between the number of active catalase molecules per cell and the rate
constant for removal of H,0, following transduction of MIA PaCa-2 cells with adenovirus
catalase (0-25 MOI) (R* =0.91).

xenobiotic (i.e. 1,4-benzoquinone, oligomycin A, and H,05) in cell
culture studies as moles of xenobiotic per cell, rather than initial
concentration in the medium, yields more consistent results and
reduces ambiguity across different physical experimental set-ups
[48]. Oxidation of P-AscH™ in both in vitro (i.e. in cell culture medium)
and in vivo settings generates a flux of H>O, [1-4]. The toxicity of
H,0, results in both irreversible and reversible changes to biomole-
cules and has been shown to be cell density dependent [49-51]. The
dose of P-AscH™ used in cell culture studies is currently reported in
terms of its initial concentration in the medium. Data presented in
Fig. 4 demonstrate that specifying dose as moles P-AscH™ per number
of cells exposed, yields more consistent results and reduces ambiguity.
When P-AscH™ is specified as moles per cell a clear dose response is
observed (Fig. 4B), whereas expression of dose as the initial concen-
tration in the medium produces ambiguous results when different
physical set-ups (e.g. different number of cells exposed) are used
(Fig. 4A).

3.5. The differential sensitivity to ascorbate across pancreatic cancer
cell lines correlates with their capacity to remove H,0,

Previous studies have indicated that there is a range for the
sensitivity of cancer cells to P-AscH™ in vitro across different tissue
types [1,3,6]. This is also demonstrated within the same tissues of
origin. Five different pancreatic cancer cell lines, MIA PaCa-2, AsPC-1,
403, 339, and PANC-1, had a differential sensitivity to P-AscH™ as
measured by the dose that was effective in killing 50% of the cells in
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Fig. 4. Dose of ascorbate is better specified on a per cell basis (pmol cell™ 1)
than as initial concentration in the medium (mM). MIA PaCa-2 cells at varying
cell densities (45,000—-543,000 cells/3.0 mL medium) were treated with 5 mM ascorbate
1 h; ATP was measured immediately after. Dose of ascorbate is expressed as: (A) initial
concentration of ascorbate in the medium; and (B) absolute amount of ascorbate (pmol)
per cell.

vitro (EDsg) (Fig. 5A and Supplementary Fig. S4). PANC-1 cells had an
EDs5o of P-AscH™ that was two times greater than MIA PaCa-2 cells,
showing that MIA PaCa-2 cells were significantly more sensitive to P-
AscH™ than PANC-1 cells (Fig. 5A and Supplementary Fig. S4).

These pancreatic cancer cell lines have very different capacities to
remove extracellular H,O, as quantitatively represented by k.. as well
as the catalase activity of the cell lines (Table 1 and Fig. 2). The ED5q of
P-AscH™ correlated directly with ke (R? =0.69, Fig. 5A). MIA PaCa-2
cells were most sensitive to P-AscH™ and had the smallest k.., whereas
PANC-1 cells were the least sensitive to P-AscH™ and had the largest
keen (Fig. 5A). These results, showing strong correlations between the
ability of cells to remove extracellular H,O» and EDsy of P-AscH,
support the important role of the H,O»-removal system in the resulting
toxicity observed from P-AscH™. P-AscH™ may be more effective in cells
that have a lower capacity to remove H,0,. The strong correlation
between catalase activity and sensitivity to P-AscH™, as well as the
effect of 3-AT inhibition of catalase on k., emphasize the role of
catalase in the removal of H>O- at high concentrations, such as those
achievable by P-AscH™.

Across different pancreatic cancer cell lines, we observed a strong
correlation between k. and their sensitivity to P-AscH™, so we
explored this further in MIA PaCa-2 cells following transduction with
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Fig. 5. Sensitivity to ascorbate varies across pancreatic cancer cell lines and
correlates with the capacity to remove extracellular H>02 (k1_-cen). (A) The
ED5( of ascorbate was determined in MIA PaCa-2, AsPC-1, 403, 339, and PANC-1 cell
lines using a clonogenic survival assay. The dose of ascorbate needed to decrease
clonogenic survival by 50% varied across pancreatic cancer cell lines. When the rate
constants for removal of extracellular H>O, by a cell (kj.cen) for these 5 different
pancreatic cancer cell lines are plotted against the EDsq of P-AscH™ there is a direct
correlation between sensitivity to P-AscH™ and the rate at which cells remove H,0, (R®
=0.69). The rate constant kj..n represents the capacity of a single cell to remove
extracellular H,O,. It is determined by: ky_cen (s™1) = keen (s cell ™ L) x 1 (cell L™Y). (B)
Transduction of MIA PaCa-2 cells with adenovirus catalase at increasing MOIs increases
resistance to ascorbate as seen by EDso. MIA PaCa-2 cells were transduced with
adenovirus catalase at 0—25 MOI and then exposed to ascorbate (0-50 pmol cell ™).
The dose that decreased clonogenic survival by 50% was determined at each transduc-
tion-MOI of adenovirus catalase (0-25 MOI). Catalase activity was measured after
transduction with adenovirus catalase. The resulting EDsq correlated with catalase
activity at varying MOI of adenovirus catalase (R? =0.94).

adenovirus catalase at varying MOIs (0-25 MOI) (Fig. 5B and
Supplementary Fig. S5). We saw a shift in the dose-response curve
following treatment with P-AscH™ that was MOI-dependent
(Supplementary Fig. S5). The dose of P-AscH™ that decreased clono-
genic survival by 50% (EDs) very strongly correlated with the catalase
activity resulting from the transduction of varying MOIs of adenovirus
catalase (R? =0.94) (Fig. 5B).

3.6. Inhibition of catalase sensitizes PANC-1 cells to pharmacological
ascorbate

Catalase varies across tumor cell lines and plays a major role in the
removal of H»0, at concentrations comparable to those generated by P-
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Fig. 6. Inhibition of catalase with 3-amino-1,2,4-triazole sensitizes PANC-1
cells to ascorbate parallels the decrease in kcep. PANC-1 cells were treated with
20 mM 3-AT for 1 h prior to treatment with 0—17 pmol cell ™! ascorbate (350,000 cells;
0-2 mM) for 1 h. Cells were then plated for a clonogenic survival assay. 3-AT sensitized
PANC-1 cells to ascorbate. The EDs of ascorbate was 1.5-fold less with 3-AT treatment
than without (n =3, error bars are standard error of the mean).

AscH™ (Figs. 2 and 3). The ability of the different pancreatic cancer cell
lines to remove H,0, quantified via k., correlated with the EDs for
P-AscH™ in cell culture, with PANC-1 cells being the most resistant to
P-AscH™ and having the most robust capacity to remove extracellular
H,0, (Fig. 5A). When catalase was inhibited with 3-AT in PANC-1 cells
prior to treatment with P-AscH™, the cells were sensitized to P-AscH™
(Fig. 6). The dose of P-AscH™ needed to decrease clonogenic survival by
50% was 1.5-fold less when cells were pretreated with 3-AT (Fig. 6).
Pretreatment with 3-AT resulted in a 40% reduction in the rate
constant at which PANC-1 cells remove H,O, (Supplementary Fig.
S6A) and a 60% decrease in catalase activity (Supplementary Fig. S6B).

3.7. P-AscH™ induces DNA damage and depletion of ATP via H,0»

As a macromolecule, DNA is vulnerable to oxidative damage
induced by P-AscH™ [52]. Treatment of MIA PaCa-2 cells with P-
AscH™ resulted in DNA damage to both nuclear DNA (nDNA) and
mitochondrial DNA (mtDNA) in a dose-dependent manner (Fig. 7A).
The frequency of lesions in mtDNA was approximately 3 times greater
than in nDNA at doses of P-AscH™ of 14 and 28 pmol cell™! (Fig. 7A).
This observation suggests that mtDNA is more susceptible to oxidative
damage caused by P-AscH™, compared to nDNA. To investigate
whether H,O, mediates the DNA damage observed upon exposure to
P-AscH™, MIA PaCa-2 were co-treated with P-AscH™ (14 pmol cell ™)
and extracellular catalase (200 units mL™). Catalase ameliorated the
detrimental effect of P-AscH™ on both nDNA and mtDNA, consistent
with the involvement of H>O, in DNA damage mediated by P-AscH™
(Fig. 7A and B).

The response to DNA damage is closely associated with depletion of
ATP [53,54]. It has previously been observed that P-AscH™ can result
in the loss of intracellular ATP [1,3,10,55,56]. P-AscH™ decreased the
intracellular concentration of ATP in a dose-dependent manner
(Fig. 4). Catalase prevented this depletion of ATP (Fig. 7C). These
results clearly indicate that H>O, plays an important role in ascorbate-
mediated ATP depletion. The combination of DNA damage coupled
with compromised levels of ATP due to the H,O, produced by P-AscH™
is detrimental to cancer cells — inhibiting growth or inducing cell death,
depending on the severity of challenge.

3.8. Pharmacological ascorbate has increased efficacy in treating
MIA PaCa-2 tumors in comparison to PANC-1 tumors in vivo

To determine if the differential sensitivity to P-AscH™ observed in
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cell culture for MIA PaCa-2 and PANC-1 cells also occurs in vivo, a
mouse model was used. Mouse xenografts of MIA PaCa-2 (ke
=1.1x10712 571 cell™! L; 101,000 active catalase monomers per cell)
and PANC-1 (keen =5.1x10712 s71 cell™® L; 459,000 active catalase
monomers per cell) cells were established; then, the mice were treated
with P-AscH™ IP twice daily for 2 weeks (Fig. 8). P-AscH™ decreased
tumor growth for both cell types in comparison to untreated controls.
However, P-AscH™ showed a greater inhibition of tumor growth for
MIA PaCa-2 xenografts in comparison to PANC-1 xenografts, consis-
tent with our in vitro observations (Fig. 8). The growth rate of the MIA
PaCa-2 tumors in the untreated control group resulted in a 30%
increase in tumor size per day compared to only a 2.7% increase in size
each day for the MIA PaCa-2 tumors treated with P-AscH™. The growth
rate of the PANC-1 tumors in the untreated control group gave a 50%
increase in tumor size per day compared to 21% increase per day for
the PANC-1 tumors treated with P-AscH™ (Fig. 8). Thus, P-AscH™
brought about a 10-fold decrease in the rate of growth for tumors
formed from MIA PaCa-2 cells while P-AscH™ was only able to produce
a 60% reduction in the rate of tumor growth for tumors derived from
PANC-1 cells. The fluorescent intensity of PANC-1 vs. MIA PaCA-2 is
approximately 50:1, indicating more catalase in the PANC-1-derived
tissue samples (Fig. 8). These data suggest that the reduced ability of
tumor tissue to remove H,0, in vivo is a fundamental aspect of the
mechanism by which P-AscH™ slows tumor growth.

4. Discussion

The data presented here quantitatively establish a central role for
H,0,, generated upon the oxidation of P-AscH™, in the cytotoxic effects
of P-AscH™ to cancer cells in vitro. Our data quantitatively support the
many observations that indicate that the cytotoxicity of P-AscH™ to
cancer cells observed in vitro is largely due to its generation of H»O> in
the medium (Supplementary Fig. S1) [1-5,9]. Ascorbate delivered at
pharmacological concentrations has shown selective toxicity to several
different tumor cell types. While this selective cytotoxicity has been
observed to be dependent on the generation of H,O,, the mechanism
by which this occurs is still under investigation. Several mechanisms
for how the H,0, generated by P-AscH™ elicits its cytotoxicity to tumor
cells have been hypothesized and examined, for example: DNA damage
[3,13,52,55-57]; and the depletion of ATP leading to tumor cell death
[1,3,10,58,59]. H50, plays an integral role in the mechanism.
However, many other factors can modulate the toxicity of P-AscH",
e.g. KRAS status [3], the level of catalytic metals [60,61], the redox
status of the intracellular GSSG,2 H*/2GSH redox couple [45,62], and
the status of NAD [58]. Yun et al. recently extended the observations
that ascorbate selectively kills KRAS and BRAF mutant cells [59]; they
suggest that P-AscH™ has as a target the redox state of GAPDH.
However, the mechanism the authors propose does not consider
important published data that clearly demonstrate that P-AscH~
induces selective oxidative stress and cytotoxicity in cancer cells vs.
normal cells by a mechanism involving the production of H,0,. Some
of the biochemical reagents used to probe possible mechanism react
directly with H,O,, thereby removing it and protecting the cells; see
Supplementary Discussion.

There is a wide-range of abilities that different tissue types remove
H>0,. We quantitatively determined such capacities for 10 different
normal tissue cell types and 15 different cancer cell lines (Table 1). On
average, the normal cells measured removed H>O, with a rate constant
that was 2-fold higher than the cancer cell lines tested (Table 1 and
Fig. 1). We observed a large range in these rate constants of removal of
H>0, both across different tissue types and within different cell lines of
the same tissue origin (Table 1).

In particular, there was a wide-range of k.. for removal of H,O»
across the different pancreatic cancer cell lines (5-fold) (Table 1 and
Fig. 2A). P-AscH™ has been studied extensively in the pancreatic cancer
model in vitro, in vivo, and in clinical trials [3,4,8,63,64]. Utilizing the
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Fig. 7. H>0> generated by ascorbate induces damage to nDNA and mtDNA in MIA PaCa-2 cells and depletes intracellular ATP. (A) MIA PaCa-2 cells were treated
with ascorbate (3.5-28 pmol cell ™) for 1 h and then the frequency of DNA lesions was quantified with QPCR. Ascorbate treatment caused dose-dependent damage to nDNA and mtDNA
(for nDNA: n =4, mean + SEM, * p < 0.05 vs. 3.5 pmol cell"}; for mtDNA: n =8, mean + SEM, ** p < 0.001 vs. 3.5 pmol cell ™). (B) MIA PaCa-2 cells were incubated with ascorbate (14
pmol cell™), or ascorbate (14 pmol cell™!) and bovine catalase (200 units mL™), or bovine catalase (200 units mL™') alone for 1 h. QPCR analysis revealed no DNA damage from
ascorbate when catalase is present in the medium indicating that the DNA damage is caused by H>O» (nDNA: n =4; mean + SEM; * p < 0.01 vs. ascorbate; mtDNA: n =4; mean + SEM; **
p <0.001 vs. ascorbate). (C) MIA PaCa-2 cells were treated with ascorbate (14 pmol cell™!), combination of ascorbate (14 pmol cell™!) and bovine catalase (200 units mL™Y), or bovine
catalase (200 units mL™") for 1 h and then intracellular ATP was determined. ATP was depleted upon treatment with ascorbate, but was unchanged when catalase was present in the

medium (n =4; mean + SEM; * p <0.001 vs. P-AscH").

quantitative dosing metric (mol cell™!) that we previously established
for direct-acting compounds that form covalent and tight-binding
complexes with their target molecule, we were able to compare the
absolute dose that was lethal to 50% of cells (EDs) across five different
pancreatic cancer cell lines, without ambiguity resulting from the
physical conditions at which the experiments were carried out
(Fig. 4) [48]. We observed the k. for removal of H,O, across the
pancreatic cancer cell lines directly correlated with their sensitivity to
P-AscH™ (as measured by the EDso) (Fig. 5A). Our data support
previous studies’ findings that catalase is the major contributor to the
removal of high fluxes of H>O, in tumor cells. We observed that both
increasing and decreasing the catalase activity had a significant effect
on the rate constant of H,O» removal and further investigated whether
similar manipulation of basal catalase activity would affect the cells’
sensitivity to P-AscH".

Increasing the catalase activity within the same cell line (MIA PaCa-
2) increased resistance to P-AscH™ (Fig. 5B). Many differences exist
between cell lines of both the same and different tissue origin; this
result supports the contribution of catalase activity in protecting cells
from P-AscH™ and limits the other confounding factors that may be
present across the different cell lines.

Decreasing catalase activity increased sensitivity to P-AscH~™
(Fig. 6). This suggests that catalase may serve as a therapeutic target;

a pharmacological inhibitor of catalase activity in tumor cells may be an
effective combination therapy to increase the efficacy of P-AscH™. In
these studies, we used 3-AT to inhibit catalase. While 3-AT is not
currently utilized in the clinic or in vivo because it is not specific to
tumor cells, there are other natural products that are potential catalase
inhibitors currently being investigated. These include: salicylic acid,
anthocyanidins, methyldopa, and neutralizing antibodies [65,66].
Thus, advances in targeting these types of reagents may lead to
increased efficacy of redox-based therapies and improved patient
survival.

There are several targets for oxidative species, e.g. H»O,. One such
target is DNA. Our results support that DNA is a major target of P-
AscH™ and that the damage caused to both nuclear and mitochondrial
DNA by P-AscH™ is mediated by H,O, (Fig. 7B). mtDNA appears to be
more susceptible to oxidative insult than nDNA. This parallels previous
reports that show a higher sensitivity of mtDNA to oxidative damage
compared to nDNA [67]. These studies looked specifically at H,O, as
the oxidant. It has been suggested that this could be due to differences
in efficiency of the repair systems of nDNA vs. mtDNA [68].

In total, our data provide quantitative evidence that H,O, is
involved in the mechanism of P-AscH™ toxicity to cancer cells in vitro.
The data of Fig. 8 support a similar role for H,O» in vivo. P-AscH™ was
differentially efficacious in slowing tumor growth in mouse xenografts
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Fig. 8. Pharmacological ascorbate slows growth of MIA PaCa-2 tumors in comparison to PANC-1 tumors in vivo. (A) MIA PaCa-2 (kcen =1.1x107*2 57! cell ™! L;
101,000 active catalase monomers per cell) cells and (B) PANC-1 (keen =5.1x10712 571 cell ™! L; 459,000 active catalase monomers per cell) cells were injected into mice and formed
tumors. Mice were treated with IP ascorbate (4 g/kg) twice daily for two weeks. Tumors were measured on day 3, 7, 10, and 14 following first treatment with ascorbate. P-AscH™ slowed
the growth rate of PANC-1 xenograft tumors to 42% of the controls; with MIA PaCa-2 tumor xenografts P-AscH™ slowed growth to just 9% of controls. The ratio of kn(PANC-1)/
keen(MIA PaCa-2) =4.6; the ratio for the relative growth rates compared to controls is essentially identical, 42%/9% =4.7, a remarkable quantitative comparison. (C) MIA PaCa-2 tumor
catalase immunofluorescence, and (D) PANC-1 tumor catalase immunofluorescence. Tumor samples were fixed with 4% paraformaldehyde at 4 °C, and blocked with 5% goat serum for
30 min at 20 °C. The samples were incubated with catalase antibody (1:50) for 20 h at 4 °C. An Alexa Fluor 488 nm goat anti-Rabbit (1:200) was used as secondary antibody. DAPI was
used to stain the cell nuclei. The samples were examined using a Zeiss confocal microscope. Scale bar, 20 pm. Tissue samples for PANC-1-derived tumors show considerably more
immunofluorescence due to the presence of catalase enzyme than tissue samples from MIA PaCa-2 tumors. (Normalized fluorescent intensity of PANC-1 vs. MIA PaCA-2 is 100 + 27 vs.

2.0+0.5.).

of two different pancreatic cancer cell types with quite different
capacities to remove H,O,: MIA PaCa-2 (keen =1.1x10712 s71 cell™!
L); and PANC-1 (keen =5.1x10712 571 cell™* L). P-AscH™ slowed the
growth rate of PANC-1 xenograft tumors to 42% of the controls; with
MIA PaCa-2 tumor xenografts P-AscH™ slowed growth to just 9% of
controls. The ratio of k.(PANC-1)/k.n(MIA PaCa-2) =4.6; the ratio
for the relative growth rates compared to controls is essentially
identical, 42%/9% =4.7. This quantitative comparison strongly sup-
ports the role of H>O, and catalase in the toxicity that can be induced
by P-AscH™. The strong correlation between the capacity of different
pancreatic cancer cells to remove H»O» and their sensitivity to P-AscH™
suggests that in vivo measurement of catalase activity in tumors may
predict which cancers will respond best to P-AscH™ therapy.

This information can also be used in finding combination therapies
that may increase the efficacy of treatment for those tumors with higher
catalase activities. For example, manganoporphyrins increase the flux
of H,0, generated from P-AscH™ when used in combination [4]. They
have been shown to be synergistic with P-AscH™ in in vitro and in vivo
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animal studies [4]. For tumor cells that have an increased capacity to
remove H,0,, combinations with agents that increase the flux of H>O,
(e.g. manganoporphyrins) may be of benefit.

Because P-AscH™ can compromise intracellular ATP levels and
induce oxidative DNA damage, it may serve as synergistic adjuvant for
those anticancer therapies that have DNA damage as part of their
mechanism of action. P-AscH™ has been shown to be synergistic with
ionizing radiation [52], a biophysical therapy that induces DNA
damage, as well as with gemcitabine [8], an agent that hinders DNA
synthesis and antagonizes its repair [69].

5. Conclusions
In this study, we observed that the differential sensitivity to P-
AscH™ across pancreatic cancer cells was strongly correlated with their

individual capacities to remove H,O>. We conclude that:

1. At high doses, ascorbate is oxidized in cell culture medium to
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generate a flux of HoOs.
2. The rate constants for removal of extracellular H>O- are on average
2-fold higher in normal cells than in cancer cells.
3. The catalase activity of tumor cell lines of varying tissue origin
revealed a wide differential in the ability of cells to remove H>0,.
. The EDsq of P-AscH™ correlated with the ability of tumor cells to
remove extracellular H,0-.
5. The response to P-AscH™ in murine-models of pancreatic cancer
paralleled the in vitro results when these same cells were exposed to
P-AscH™.

This work provides definitive evidence that H,O, is involved in the
mechanism of P-AscH™ toxicity to cancer cells and that catalase activity
is critical in removing this H>O. These results indicate that an in vivo
measurement of catalase activity in tumors may predict which cancers
will respond to pharmacological ascorbate therapy. This information
can also be used in finding combination therapies that may increase the
efficacy of treatment for those tumors with higher catalase activities.
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