607 research outputs found
Mild cold effects on hunger, food intake, satiety and skin temperature in humans.
BACKGROUND: Mild cold exposure increases energy expenditure and can influence energy balance, but at the same time it does not increase appetite and energy intake. OBJECTIVE: To quantify dermal insulative cold response, we assessed thermal comfort and skin temperatures changes by infrared thermography. METHODS: We exposed healthy volunteers to either a single episode of environmental mild cold or thermoneutrality. We measured hunger sensation and actual free food intake. After a thermoneutral overnight stay, five males and five females were exposed to either 18°C (mild cold) or 24°C (thermoneutrality) for 2.5 h. Metabolic rate, vital signs, skin temperature, blood biochemistry, cold and hunger scores were measured at baseline and for every 30 min during the temperature intervention. This was followed by an ad libitum meal to obtain the actual desired energy intake after cold exposure. RESULTS: We could replicate the cold-induced increase in REE. But no differences were detected in hunger, food intake, or satiety after mild cold exposure compared with thermoneutrality. After long-term cold exposure, high cold sensation scores were reported, which were negatively correlated with thermogenesis. Skin temperature in the sternal area was tightly correlated with the increase in energy expenditure. CONCLUSIONS: It is concluded that short-term mild cold exposure increases energy expenditure without changes in food intake. Mild cold exposure resulted in significant thermal discomfort, which was negatively correlated with the increase in energy expenditure. Moreover, there is a great between-subject variability in cold response. These data provide further insights on cold exposure as an anti-obesity measure.The study was funded by NIHR, BRC Seed Fund, individual grants: ML and MS: Marie Curie Fellowship, CYT: Welcome Trust Fellowship, SV: MRC, BHF and BBSRC, AVP: BBSRC.This is the final version of the article. It first appeared from Bioscientifica via https://doi.org/ 10.1530/EC-16-000
Recommended from our members
The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation.
The zinc finger-containing transcription factors Egr1 (Krox24) and Egr2 (Krox20) have been implicated in the proliferation and differentiation of many cell types. Egr2 has earlier been shown to play a positive role in adipocyte differentiation, but the function of Egr1 in this context is unknown. We compared the roles of Egr1 and Egr2 in the differentiation of murine 3T3-L1 adipocytes. Egr1 protein was rapidly induced after addition of differentiation cocktail, whereas Egr2 protein initially remained low before increasing on days 1 and 2, concomitant with the disappearance of Egr1. In marked contrast to the effects of Egr2, differentiation was inhibited by ectopic expression of Egr1 and potentiated by knockdown of Egr1. The pro-adipogenic effects of Egr1 knockdown were particularly notable when isobutylmethylxanthine (IBMX) was omitted from the differentiation medium. However, knockdown of Egr1 did not affect CCAAT/enhancer binding protein (C/EBP)beta protein expression or phosphorylation of CREB Ser133. Further, Egr1 did not directly affect the activity of promoters for the master adipogenic transcription factors, C/EBPalpha or peroxisome proliferator-activated receptor-gamma2, as assessed in luciferase reporter assays. These data indicate that Egr1 and Egr2 exert opposing influences on adipocyte differentiation and that the careful regulation of both is required for maintaining appropriate levels of adipogenesis. Further, the pro-differentiation effects of IBMX involve suppression of the inhibitory influence of Egr1
Defective extracellular matrix remodeling in brown adipose tissue is associated with fibro-inflammation and reduced diet-induced thermogenesis.
The relevance of extracellular matrix (ECM) remodeling is reported in white adipose tissue (AT) and obesity-related dysfunctions, but little is known about the importance of ECM remodeling in brown AT (BAT) function. Here, we show that a time course of high-fat diet (HFD) feeding progressively impairs diet-induced thermogenesis concomitantly with the development of fibro-inflammation in BAT. Higher markers of fibro-inflammation are associated with lower cold-induced BAT activity in humans. Similarly, when mice are housed at thermoneutrality, inactivated BAT features fibro-inflammation. We validate the pathophysiological relevance of BAT ECM remodeling in response to temperature challenges and HFD using a model of a primary defect in the collagen turnover mediated by partial ablation of the Pepd prolidase. Pepd-heterozygous mice display exacerbated dysfunction and BAT fibro-inflammation at thermoneutrality and in HFD. Our findings show the relevance of ECM remodeling in BAT activation and provide a mechanism for BAT dysfunction in obesity
Polarized photons in radiative muon capture
We discuss the measurement of polarized photons arising from radiative muon
capture. The spectrum of left circularly polarized photons or equivalently the
circular polarization of the photons emitted in radiative muon capture on
hydrogen is quite sensitive to the strength of the induced pseudoscalar
coupling constant . A measurement of either of these quantities, although
very difficult, might be sufficient to resolve the present puzzle resulting
from the disagreement between the theoretical prediction for and the
results of a recent experiment. This sensitivity results from the absence of
left-handed radiation from the muon line and from the fact that the leading
parts of the radiation from the hadronic lines, as determined from the chiral
power counting rules of heavy-baryon chiral perturbation theory, all contain
pion poles.Comment: 10 pages, 6 figure
Links between the three-dimensional movements of whale sharks (Rhincodon typus) and the bio-physical environment off a coral reef
Funding: This research was supported by funding from Santos Ltd and The Australian Institute of Marine Science (AIMS).Background Measuring coastal-pelagic prey fields at scales relevant to the movements of marine predators is challenging due to the dynamic and ephemeral nature of these environments. Whale sharks (Rhincodon typus) are thought to aggregate in nearshore tropical waters due to seasonally enhanced foraging opportunities. This implies that the three-dimensional movements of these animals may be associated with bio-physical properties that enhance prey availability. To date, few studies have tested this hypothesis. Methods Here, we conducted ship-based acoustic surveys, net tows and water column profiling (salinity, temperature, chlorophyll fluorescence) to determine the volumetric density, distribution and community composition of mesozooplankton (predominantly euphausiids and copepods) and oceanographic properties of the water column in the vicinity of whale sharks that were tracked simultaneously using satellite-linked tags at Ningaloo Reef, Western Australia. Generalised linear mixed effect models were used to explore relationships between the 3-dimensional movement behaviours of tracked sharks and surrounding prey fields at a spatial scale of ~ 1 km. Results We identified prey density as a significant driver of horizontal space use, with sharks occupying areas along the reef edge where densities were highest. These areas were characterised by complex bathymetry such as reef gutters and pinnacles. Temperature and salinity profiles revealed a well-mixed water column above the height of the bathymetry (top 40 m of the water column). Regions of stronger stratification were associated with reef gutters and pinnacles that concentrated prey near the seabed, and entrained productivity at local scales (~ 1 km). We found no quantitative relationship between the depth use of sharks and vertical distributions of horizontally averaged prey density. Whale sharks repeatedly dove to depths where spatially averaged prey concentration was highest but did not extend the time spent at these depth layers. Conclusions Our work reveals previously unrecognized complexity in interactions between whale sharks and their zooplankton prey.Publisher PDFPeer reviewe
On Possibilities of Studying of Supernova Neutrinos at BAKSAN
We consider the possibilities of studying a supernova collapse neutrino burst
at Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy
of Sciences) using the prposed 5-kt target-mass liquid scintillation
spectrometer. Attention is given to the influence of mixing angle
on the expected rates and spectra of neutrino events
- …