3 research outputs found

    Stabilization of the Active Ruthenium Oxycarbonate Phase for Low-Temperature CO<sub>2</sub> Methanation

    No full text
    Interstitial carbon-doped RuO2 catalyst with the newly reported ruthenium oxycarbonate phase is a key component for low-temperature CO2 methanation. However, a crucial factor is the stability of interstitial carbon atoms, which can cause catalyst deactivation when removed during the reaction. In this work, the stabilization mechanism of the ruthenium oxycarbonate active phase under reaction conditions is studied by combining advanced operando spectroscopic tools with catalytic studies. Three sequential processes: carbon diffusion, metal oxide reduction, and decomposition of the oxycarbonate phase and their influence by the reaction conditions, are discussed. We present how the reaction variables and catalyst composition can promote carbon diffusion, stabilizing the oxycarbonate catalytically active phase under steady-state reaction conditions and maintaining catalyst activity and stability over long operation times. In addition, insights into the reaction mechanism and a detailed analysis of the catalyst composition that identifies an adequate balance between the two phases, i.e., ruthenium oxycarbonate and ruthenium metal, are provided to ensure an optimum catalytic behavior

    In Situ Determination of the Water Condensation Mechanisms on Superhydrophobic and Superhydrophilic Titanium Dioxide Nanotubes

    Get PDF
    One-dimensional (1D) nanostructured surfaces based on high-density arrays of nanowires and nanotubes of photoactive titanium dioxide (TiO<sub>2</sub>) present a tunable wetting behavior from superhydrophobic to superhydrophilic states. These situations are depicted in a reversible way by simply irradiating with ultraviolet light (superhydrophobic to superhydrophilic) and storage in dark. In this article, we combine in situ environmental scanning electron microscopy (ESEM) and near ambient pressure photoemission analysis (NAPP) to understand this transition. These experiments reveal complementary information at microscopic and atomic level reflecting the surface wettability and chemical state modifications experienced by these 1D surfaces upon irradiation. We pay special attention to the role of the water condensation mechanisms and try to elucidate the relationship between apparent water contact angles of sessile drops under ambient conditions at the macroscale with the formation of droplets by water condensation at low temperature and increasing humidity on the nanotubes’ surfaces. Thus, for the as-grown nanotubes, we reveal a metastable and superhydrophobic Cassie state for sessile drops that tunes toward water dropwise condensation at the microscale compatible with a partial hydrophobic Wenzel state. For the UV-irradiated surfaces, a filmwise wetting behavior is observed for both condensed water and sessile droplets. NAPP analyses show a hydroxyl accumulation on the as-grown nanotubes surfaces during the exposure to water condensation conditions, whereas the water filmwise condensation on a previously hydroxyl enriched surface is proved for the superhydrophilic counterpart

    Elucidating the Photoredox Nature of Isolated Iron Active Sites on MCM-41

    No full text
    Photocatalytic performance is highly dependent on the nature and dispersion of the active sites, playing a crucial role in the optoelectronic and charge-transfer processes. Here, we report stabilized isolated iron on MCM-41 as a highly active catalyst for a photoredox reaction. The unique nature of the single-atom centers exhibit a trichloroethylene conversion per iron site that is almost 5 times higher than that of TiO<sub>2</sub>. Advanced characterization and theoretical calculations indicate the generation of hydroxyl radicals, through a photoinduced ligand-to-metal charge-transfer mechanism, which act as hole scavengers that lead to the formation of intermediate oxo–iron species (FeO). This intermediate species is the key step in promoting the photocatalytic reactions. Understanding the mechanistic photoredox pathway in isolated active site materials is imperative for developing highly efficient nonprecious photocatalysts for environmental or energy applications
    corecore