4 research outputs found

    Synthesis of N4-aryl-β-d-glucopyranosylcytosines: a methodology study

    Get PDF
    A number of leaving groups, including arylsulfonates, triazoles, 3-nitrotriazoles, and tetrazoles, have been studied for the substitution reaction by aryl and alkyl amines at the 4-position of β-d-glucopyranosyluracils. Examination of the stability, ease of purification and reactivity in the substitution reaction led to a number of optimized conditions with the most convenient involving substitution of triazole derivatives under microwave conditions in the presence of silica gel. Under these conditions, a number of N4-aryl-substituted β-d-glucopyranosylcytosines were prepared as potential inhibitors of glycogen phosphorylase, a molecular target for type-2 diabetes mellitus

    {Synthesis of N4-aryl-β\beta-d-glucopyranosylcytosines: a methodology study}

    No full text
    {\textcopyright} 2015 Elsevier Ltd. All rights reserved.A number of leaving groups, including arylsulfonates, triazoles, 3-nitrotriazoles, and tetrazoles, have been studied for the substitution reaction by aryl and alkyl amines at the 4-position of β\beta-D-glucopyranosyluracils. Examination of the stability, ease of purification and reactivity in the substitution reaction led to a number of optimized conditions with the most convenient involving substitution of triazole derivatives under microwave conditions in the presence of silica gel. Under these conditions, a number of N4-aryl-substituted β\beta-D-glucopyranosylcytosines were prepared as potential inhibitors of glycogen phosphorylase, a molecular target for type-2 diabetes mellitus

    A New Potent Inhibitor of Glycogen Phosphorylase Reveals the Basicity of the Catalytic Site

    No full text
    2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim The design and synthesis of a glucose-based acridone derivative (GLAC), a potent inhibitor of glycogen phosphorylase (GP) are described. GLAC is the first inhibitor of glycogen phosphorylase, the electronic absorption properties of which are clearly distinguishable from those of the enzyme. This allows probing subtle interactions in the catalytic site. The GLAC absorption spectra, associated with X-ray crystallography and quantum chemistry cal culations, reveal that part of the catalytic site of GP behaves as a highly basic environment in which GLAC exists as a bis-anion. This is explained by water-bridged hydrogen-bonding interactions with specific catalytic site residues

    A New Potent Inhibitor of Glycogen Phosphorylase Reveals the Basicity of the Catalytic Site

    No full text
    International audienceThe design and synthesis of a glucose-based acridone derivative (GLAC), a potent inhibitor of glycogen phosphorylase (GP) are described. GLAC is the first inhibitor of glycogen phosphorylase, the electronic absorption properties of which are clearly distinguishable from those of the enzyme. This allows probing subtle interactions in the catalytic site. The GLAC absorption spectra, associated with X-ray crystallography and quantum chemistry calculations, reveal that part of the catalytic site of GP behaves as a highly basic environment in which GLAC exists as a bis-anion. This is explained by water-bridged hydrogen-bonding interactions with specific catalytic site residues
    corecore