7 research outputs found

    Understanding Human Astrovirus from Pathogenesis to Treatment

    Get PDF
    While human astroviruses (HAstV) were discovered nearly 45 years ago, these small positive-sense RNA viruses remain critically understudied. These studies provide fundamental new research on astrovirus pathogenesis and disruption of the gut epithelium by induction of epithelial-mesenchymal transition (EMT) following astrovirus infection. Here we characterize HAstV-induced EMT as an upregulation of SNAI1 and VIM with a down regulation of CDH1 and OCLN, loss of cell-cell junctions most notably at 18 hours post-infection (hpi), and loss of cellular polarity by 24 hpi. While active transforming growth factor- (TGF-) increases during HAstV infection, inhibition of TGF- signaling does not hinder EMT induction. However, HAstV-induced EMT does require active viral replication. These are among the first studies describing the induction of EMT by a non-oncogenic virus and provides an exciting opportunity to understand EMT induction independent of cancer. Our findings likely extend beyond astrovirus to other viruses and may shed light on novel ways pathogens can circumvent the barriers meant to protect against them. Crossing these barriers can lead to systemic and even fatal infections. Astroviruses can be especially problematic in immunocompromised individuals and infants where the virus has been associated with necrotizing enterocolitis, severe and persistent diarrhea, and even encephalitis and meningitis. Using our novel tools and models, we demonstrate that the FDA-approved broad-spectrum anti-infective drug nitazoxanide (NTZ) blocks astrovirus replication in vitro with a 50% effective concentration (EC50) of approximately 1.47μM. It can be administered up to 8 hours post-infection and is effective against multiple human astrovirus serotypes including clinical isolates. Most importantly, NTZ reduces viral shed in vivo, exhibiting its potential as a future clinical therapeutic. Overall, these studies will further our understanding of astrovirus pathogenesis leading to the development of therapeutic options for vulnerable populations

    Human Astroviruses: A Tale of Two Strains.

    No full text
    Since the 1970s, eight closely related serotypes of classical human astroviruses (HAstV) have been associated with gastrointestinal illness worldwide. In the late 2000s, three genetically unique human astrovirus clades, VA1-VA3, VA2-VA4, and MLB, were described. While the exact disease associated with these clades remains to be defined, VA1 has been associated with central nervous system infections. The discovery that VA1 could be grown in cell culture, supports exciting new studies aimed at understanding viral pathogenesis. Given the association of VA1 with often lethal CNS infections, we tested its susceptibility to the antimicrobial drug, nitazoxanide (NTZ), which we showed could inhibit classical HAstV infections. Our studies demonstrate that NTZ inhibited VA1 replication in Caco2 cells even when added at 12 h post-infection, which is later than in HAstV-1 infection. These data led us to further probe VA1 replication kinetics and cellular responses to infection in Caco-2 cells in comparison to the well-studied HAstV-1 strain. Overall, our studies highlight that VA1 replicates more slowly than HAstV-1 and elicits significantly different cellular responses, including the inability to disrupt cellular junctions and barrier permeability

    Human Astroviruses: A Tale of Two Strains

    No full text
    Since the 1970s, eight closely related serotypes of classical human astroviruses (HAstV) have been associated with gastrointestinal illness worldwide. In the late 2000s, three genetically unique human astrovirus clades, VA1-VA3, VA2-VA4, and MLB, were described. While the exact disease associated with these clades remains to be defined, VA1 has been associated with central nervous system infections. The discovery that VA1 could be grown in cell culture, supports exciting new studies aimed at understanding viral pathogenesis. Given the association of VA1 with often lethal CNS infections, we tested its susceptibility to the antimicrobial drug, nitazoxanide (NTZ), which we showed could inhibit classical HAstV infections. Our studies demonstrate that NTZ inhibited VA1 replication in Caco2 cells even when added at 12 h post-infection, which is later than in HAstV-1 infection. These data led us to further probe VA1 replication kinetics and cellular responses to infection in Caco-2 cells in comparison to the well-studied HAstV-1 strain. Overall, our studies highlight that VA1 replicates more slowly than HAstV-1 and elicits significantly different cellular responses, including the inability to disrupt cellular junctions and barrier permeability

    Astrovirus Pathogenesis

    No full text
    Astroviruses are a major cause of diarrhea in the young, elderly, and the immunocompromised. Since the discovery of human astrovirus type 1 (HAstV-1) in 1975, the family Astroviridae has expanded to include two more human clades and numerous mammalian and avian-specific genotypes. Despite this, there is still little known about pathogenesis. The following review highlights the current knowledge of astrovirus pathogenesis, and outlines the critical steps needed to further astrovirus research, including the development of animal models of cell culture systems

    Astrovirus Pathogenesis

    No full text
    Astroviruses are a major cause of diarrhea in the young, elderly, and the immunocompromised. Since the discovery of human astrovirus type 1 (HAstV-1) in 1975, the family Astroviridae has expanded to include two more human clades and numerous mammalian and avian-specific genotypes. Despite this, there is still little known about pathogenesis. The following review highlights the current knowledge of astrovirus pathogenesis, and outlines the critical steps needed to further astrovirus research, including the development of animal models of cell culture systems
    corecore