11 research outputs found

    Maternally Acquired Zika Antibodies Enhance Dengue Disease Severity in Mice

    Get PDF
    Antibody (Ab)-dependent enhancement can exacerbate dengue virus (DENV) infection due to cross-reactive Abs from an initial DENV infection, facilitating replication of a second DENV. Zika virus (ZIKV) emerged in DENV-endemic areas, raising questions about whether existing immunity could affect these related flaviviruses. We show that mice born with circulating maternal Abs against ZIKV develop severe disease upon DENV infection. Compared with pups of naive mothers, those born to ZIKV-immune mice lacking type I interferon receptor in myeloid cells (LysMCre+Ifnar1fl/fl) exhibit heightened disease and viremia upon DENV infection. Passive transfer of IgG isolated from mice born to ZIKV-immune mothers resulted in increased viremia in naive recipient mice. Treatment with Abs blocking inflammatory cytokine tumor necrosis factor linked to DENV disease or Abs blocking DENV entry improved survival of DENV-infected mice born to ZIKV-immune mothers. Thus, the maternal Ab response to ZIKV infection or vaccination might predispose to severe dengue disease in infants

    Targeting the PSGL-1 Immune Checkpoint Promotes Immunity to PD-1-Resistant Melanoma.

    No full text
    Immune-checkpoint inhibitors have had impressive efficacy in some patients with cancer, reinvigorating long-term durable immune responses against tumors. Despite the clinical success of these therapies, most patients with cancer continue to be unresponsive to these treatments, highlighting the need for novel therapeutic options. Although P-selectin glycoprotein ligand-1 (PSGL-1) has been shown to inhibit immune responses in a variety of disease models, previous work has yet to address whether PSGL-1 can be targeted therapeutically to promote antitumor immunity. Using an aggressive melanoma tumor model, we targeted PSGL-1 in tumor-bearing mice and found increased effector CD4+ and CD8+ T-cell responses and decreased regulatory T cells (Treg) in tumors. T cells exhibited increased effector function, activation, and proliferation, which delayed tumor growth in mice after anti-PSGL-1 treatment. Targeting PD-1 in PSGL-1-deficient, tumor-bearing mice led to an increased frequency of mice with complete tumor eradication. Targeting both PSGL-1 and PD-1 in wild-type tumor-bearing mice also showed enhanced antitumor immunity and slowed melanoma tumor growth. Our findings showed that therapeutically targeting the PSGL-1 immune checkpoint can reinvigorate antitumor immunity and suggest that targeting PSGL-1 may represent a new therapeutic strategy for cancer treatment

    HMGB2 regulates the differentiation and stemness of exhausted CD8+ T cells during chronic viral infection and cancer

    Get PDF
    Abstract Chronic infections and cancers evade the host immune system through mechanisms that induce T cell exhaustion. The heterogeneity within the exhausted CD8+ T cell pool has revealed the importance of stem-like progenitor (Tpex) and terminal (Tex) exhausted T cells, although the mechanisms underlying their development are not fully known. Here we report High Mobility Group Box 2 (HMGB2) protein expression is upregulated and sustained in exhausted CD8+ T cells, and HMGB2 expression is critical for their differentiation. Through epigenetic and transcriptional programming, we identify HMGB2 as a cell-intrinsic regulator of the differentiation and maintenance of Tpex cells during chronic viral infection and in tumors. Despite Hmgb2 −/− CD8+ T cells expressing TCF-1 and TOX, these master regulators were unable to sustain Tpex differentiation and long-term survival during persistent antigen. Furthermore, HMGB2 also had a cell-intrinsic function in the differentiation and function of memory CD8+ T cells after acute viral infection. Our findings show that HMGB2 is a key regulator of CD8+ T cells and may be an important molecular target for future T cell-based immunotherapies

    Detection of Zika virus in mouse mammary gland and breast milk.

    No full text
    Clinical reports of Zika Virus (ZIKV) RNA detection in breast milk have been described, but evidence conflicts as to whether this RNA represents infectious virus. We infected post-parturient AG129 murine dams deficient in type I and II interferon receptors with ZIKV. ZIKV RNA was detected in pup stomach milk clots (SMC) as early as 1 day post maternal infection (dpi) and persisted as late as 7 dpi. In mammary tissues, ZIKV replication was demonstrated by immunohistochemistry in multiple cell types including cells morphologically consistent with myoepithelial cells. No mastitis was seen histopathologically. In the SMC and tissues of the nursing pups, no infectious virus was detected via focus forming assay. However, serial passages of fresh milk supernatant yielded infectious virus, and immunohistochemistry showed ZIKV replication protein associated with degraded cells in SMC. These results suggest that breast milk may contain infectious ZIKV. However, breast milk transmission (BMT) does not occur in this mouse strain that is highly sensitive to ZIKV infection. These results suggest a low risk for breast milk transmission of ZIKV, and provide a platform for investigating ZIKV entry into milk and mechanisms which may prevent or permit BMT

    A Zika virus mutation enhances transmission potential and confers escape from protective dengue virus immunity.

    No full text
    Zika virus (ZIKV) and dengue virus (DENV) are arthropod-borne pathogenic flaviviruses that co-circulate in many countries. To understand some of the pressures that influence ZIKV evolution, we mimic the natural transmission cycle by repeating serial passaging of ZIKV through cultured mosquito cells and either DENV-naive or DENV-immune mice. Compared with wild-type ZIKV, the strains passaged under both conditions exhibit increased pathogenesis in DENV-immune mice. Application of reverse genetics identifies an isoleucine-to-valine mutation (I39V) in the NS2B proteins of both passaged strains that confers enhanced fitness and escape from pre-existing DENV immunity. Introduction of I39V or I39T, a naturally occurring homologous mutation detected in recent ZIKV isolates, increases the replication of wild-type ZIKV in human neuronal precursor cells and laboratory-raised mosquitoes. Our data indicate that ZIKV strains with enhanced transmissibility and pathogenicity can emerge in DENV-naive or -immune settings, and that NS2B-I39 mutants may represent ZIKV variants of interest
    corecore