43 research outputs found

    Utilización del modelo WRF/ARW- Fall 3D para el pronóstico de dispersión de cenizas durante la erupción 2011 del Cordón Caulle.

    Get PDF
    (Resumen extraído del Acceso al Texto completo proporcionado por REDIB) En el marco de la “Red Iberoamericana para el monitoreo y modelización de cenizas y aerosoles volcánicos y su impacto en infraestructura y calidad del Aire” ( Proyecto CENIZA CYTED 410-RTO-392 http://bsccase02.bsc.es/projects/cyted/tercero_red _taller.html), desde el inicio de la erupción del Cordón Caulle en 2011, se procedió a realizar pronósticos de dispersión de las cenizas, aplicando el modelo de dispersión Fall3D (Folch et al., 2008) acoplado al modelo Meteorológico Weather Research and Forecasting (WRF/ARW). Ello permitió brindar una herramienta inestimable de prevención y mitigación tanto a las autoridades de Protección Civil de diversos niveles. Los pronósticos se validaron por diversos métodos, tanto con medidas de campo directas, como las obtenidas por medio de imágenes satelitales, confirmándose la validez de estos, lo que le confiere a los modelos aplicados una alta confiabilidad para sus diversos usos.Fil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigaciones en Energía No Convencional; Argentina

    Las energías renovables como oportunidad y desafío para el desarrollo territorial, Valle de Lerma, Salta, Argentina

    Get PDF
    Renewable energy assessment arises in the context of Territorial Planning of Lerma Valley in Salta as a strategy for regional development and improved quality of life and environment. The methodology applied is based on Multi- Criteria Evaluation tools, Geographic Information Systems application and participatory consultation techniques. The results were oriented to territorial diagnosis, energy resources assessment and alternative technologies as well as planning and management proposals. At diagnosis, renewable energies were identified as viable options in production and access to basic services. The potential offer of renewable resources was high as to solar radiation and hydraulic resources but moderate as to wind potential. It was varied in the case of organic energy and biomass due to multiple sources. Technological alternatives and actions to improve the energy scenario in Lerma Valley were assessed and the following priorities were established: environmental education, strategic energy planning and varied applications of solar energy (dryers, greenhouses, bioclimatic architecture, water collectors and cookers). Energy policies that are ?more? sustainable were suggested, such as: coordinating the energy sector with both other sectors and action levels within the framework of an integrated land use planning, strengthening local institutions for energy management, and overcoming limitations on local transfer of renewable energy. Renewable energies should be considered as an opportunity and challenge to promote processes of ?change? in the region through a reaffirmed commitment to environment and society.Fil: Belmonte, Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Conicet - Salta. Instituto de Investigaciones En Energía No Convencional; Argentina;Fil: Franco, JuditH. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Conicet - Salta. Instituto de Investigaciones En Energía No Convencional; Argentina;Fil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Conicet - Salta. Instituto de Investigaciones En Energía No Convencional; Argentina

    Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina)

    Get PDF
    We have measured the boron concentration and isotope composition of regionally expansive borate deposits and geothermal fluids from the Cenozoic geothermal system of the Argentine Puna Plateau in the central Andes. The borate minerals borax, colemanite, hydroboracite, inderite, inyoite, kernite, teruggite, tincalconite, and ulexite span a wide range of d 11B values from 229.5 to 20.3‰, whereas fluids cover a range from 218.3 to 0.7‰. The data from recent coexisting borate minerals and fluids allow for the calculation of the isotope composition of the ancient mineralizing fluids and thus for the constraint of the isotope composition of the source rocks sampled by the fluids. The boron isotope composition of ancient mineralizing fluids appears uniform throughout the section of precipitates at a given locality and similar to values obtained from recent thermal fluids. These findings support models that suggest uniform and stable climatic, magmatic, and tectonicconditions during the past 8 million years in this part of the central Andes. Boron in fluids is derived from different sources, depending on the drainage system and local country rocks. One significant boron source is the Paleozoic basement, which has a whole-rock isotopic composition of d 11B ¼ 28.9 ^ 2.2‰ (1 SD); another important boron contribution comes from Neogene-Pleistocene ignimbrites (d 11B ¼ 23.8 ^ 2.8‰, 1 SD). Cenozoic andesites and Mesozoic limestones (d 11B # þ 8‰) provide a potential third boron source.Fil: Kasemann, Simone A.. German Research Centre for Geosciences; AlemaniaFil: Meixner, Anette. German Research Centre for Geosciences; AlemaniaFil: Erzinger, Jörg. German Research Centre for Geosciences; AlemaniaFil: Viramonte, Jose German. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alonso, Ricardo Narciso. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Franz, Gerhard. Technishe Universitat Berlin; Alemani

    Secondary lahar hazard assessment for Villa la Angostura, Argentina, using Two-Phase-Titan modelling code during 2011 Cordón Caulle eruption

    Get PDF
    This paper presents the results of lahar modelling in the town of Villa La Angostura (Neuquén-Argentina) based on the Two-Phase-Titan modelling computer code. The purpose of this exercise is to provide decision makers with a useful tool to assess lahar hazard during the 2011 PuyehueCordón Caulle Volcanic Complex eruption. The possible occurrence of lahars mobilized from recent ash falls that could reach the city was analysed. The performance of the TwoPhase-Titan model using 15 m resolution digital elevation models (DEMs) developed from optical satellite images and from radar satellite images was evaluated. The output of these modellings showed inconsistencies that, based on field observations, were attributed to bad adjustment of the DEMs to real topography. Further testing of results using more accurate radar-based 10 m DEM, provided more realistic predictions. This procedure allowed us to simulate the path of flows from Florencia, Las Piedritas and Colorado creeks, which are the most hazardous streams for debris flows in Villa La Angostura. The output of the modelling is a valuable tool for city planning and risk management especially considering the glacial geomorphic features of the region, the strong urban development growth and the land occupation that has occurred in the last decade in Villa La Angostura and its surroundings.Fil: Córdoba, G.. Universidad de Nariño; ColombiaFil: Villarosa, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones En Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Reg.universidad Bariloche. Instituto de Investigaciones En Biodiversidad y Medioambiente; ArgentinaFil: Sheridan, M.. State University of New York at Buffalo; Estados UnidosFil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; ArgentinaFil: Beigt, Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones En Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Reg.universidad Bariloche. Instituto de Investigaciones En Biodiversidad y Medioambiente; ArgentinaFil: Salinas de Salmuni, Nelida Graciela. Comision Nacional de Actividades Espaciales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Forecasting volcanic ash dispersal and coeval resuspension during the April-May 2015 Calbuco eruption

    Get PDF
    Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.Fil: Reckziegel, Florencia Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Leonardo, Mingari. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Villarosa, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Folch Duran, Arnau. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Collini, E.. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; ArgentinaFil: Viramonte, Jose German. Universidad Nacional de Salta; ArgentinaFil: Romero, J.. Centro de Investigación y Difusión de Volcanes de Chile; Chile. Universidad de Atacama; ChileFil: Osores, María Soledad. Comision Nacional de Actividades Espaciales; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    El aprovechamiento del calor de los Andes para el desarrollo energético sustentable

    Get PDF
    La creciente demanda energética mundial por parte de la industria y la sociedad, como así también ciertos aspectos relacionados con el medio ambiente, tales como la contaminación, la emisión de gases de efecto invernadero y el agotamiento de los recursos, han acentuado los problemas de déficit energético alrededor del mundo. Esto ha ocasionado el consiguiente desarrollo de políticas públicas y privadas diseñadas para fomentar el aprovechamiento de energías limpias, no convencionales y renovables, que reduzcan la dependencia de combustibles fósiles para la generación de energía como es el caso de la energía geotérmica. Si bien Argentina posee un alto potencial geotérmico debido a las condiciones geológicas favorables, es decir sobre un borde tectónico convergente con vulcanismo activo a lo largo de la Cordillera de los Andes, no existe hasta el momento ninguna planta geotérmica en todo el paísFil: Ahumada, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del Noroeste Argentino. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto de Bio y Geociencias del Noroeste Argentino; ArgentinaFil: Filipovich, Ruben Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del Noroeste Argentino. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto de Bio y Geociencias del Noroeste Argentino; ArgentinaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del Noroeste Argentino. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto de Bio y Geociencias del Noroeste Argentino; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del Noroeste Argentino. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto de Bio y Geociencias del Noroeste Argentino; ArgentinaFil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del Noroeste Argentino. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto de Bio y Geociencias del Noroeste Argentino; Argentin

    Magmatic evolution and architecture of an arc-related, rhyolitic caldera complex: The late Pleistocene to Holocene Cerro Blanco volcanic complex, southern Puna, Argentina

    Get PDF
    Through the lens of bulk-rock and matrix glass geochemistry, we investigated the magmatic evolution and pre-eruptive architecture of the siliceous magma complex beneath the Cerro Blanco volcanic complex, a Crater Laketype caldera complex in the southern Puna Plateau of the Central Andes of Argentina. The Cerro Blanco volcanic complex has been the site of two caldera-forming eruptions with volcanic explosivity index (VEI) 6+ that emplaced the ca. 54 ka Campo Piedra Pomez ignimbrite and the ca. 4.2 ka Cerro Blanco ignimbrite. As such, it is the most productive recent explosive volcano in the Central Andes. The most recent eruptions (younger than 4.2 ka) are dominantly postcaldera effusions of crystal-rich domes and associated small explosive pulses. Previous work has demonstrated that andesitic recharge of and mixing with rhyolitic magma occurred at the base of the magma complex, at ~10 km depth. New isotopic data (Sr, Nd, Pb, and O) confirm that the Cerro Blanco volcanic complex rhyolite suite is part of a regional southern Puna, arc-related ignimbrite group. The suite defines a tight group of consanguineous siliceous magmas that serves as a model for the evolution of arc-related, caldera-forming silicic magma systems in the region and elsewhere. These data indicate that the rhyolites originated through limited assimilation of and mixing with upper-crustal lithologies by regional basaltic andesite parent materials, followed by extensive fractional crystallization. Least squares models of major elements in tandem with Rayleigh fractionation models for trace elements reveal that the internal variations among the rhyolites through time can be derived by extensive fractionation of a quartz-two feldspar (granitic minimum) assemblage with limited assimilation. The rare earth element character of local volumes of melt in some samples of the Campo Piedra Pomez ignimbrite basal fallout requires significant fractionation of amphibole.The distinctive major- and trace-element characteristics of bulk rock and matrix of the Campo Piedra Pomez and Cerro Blanco tephras provide useful geochemical fingerprints to facilitate regional tephrochronology. Available data indicate that rhyolites from other neighborhood centers, such as Cueros de Purulla, share bulk chemical characteristics with the Campo Piedra Pomez ignimbrite rhyolites, but they appear to be isotopically distinct. Pre-eruptive storage and final equilibration of the rhyolitic melts were estimated from matrix glass compositions projected onto the haplogranitic system (quartz-albite-orthoclase-H2O) and using rhyolite-MELTS models.These revealed equilibration pressures between 360 and 60 MPa (~10-2 km depth) with lowest pressures in the Holocene eruptions. Model temperatures for the suite ranged from 695 to 790 °C ntegrated together, our results reveal that the Cerro Blanco volcanic complex is a steady-state (low-magmatic-flux), arc-related complex, standing in contrast to the flare-up (high-magmatic-flux) supervolcanoes that dominate the Neogene volcanic stratigraphy. The silicic magmas of the Cerro Blanco volcanic complex were derived more directly from mafic and intermediate precursors through extensive fractional crystallization, albeit with some mixing and assimilation of local basement. Geochemical models and pressuretemperature estimates indicate that significant volumes of remnant cumulates of felsic and intermediate composition should dominate the polybaric magma complex beneath the Cerro Blanco volcanic complex, which gradually shallowed through time. Evolution to the most silicic compositions and final equilibration of some of the postcaldera domes occurred during ascent and decompression at depths less than 2 km. Our work connotes an incrementally accumulated (over at least 54 k.y.), upper-crustal pluton beneath the Cerro Blanco volcanic complex between 2 and 10 km depth.The composition of this pluton is predicted to be dominantly granitic, with deeper parts being granodioritic to tonalitic. The progressive solidification and eventual contraction of the magma complex may account for the decades of deflation that has characterized Cerro Blanco.The presently active geothermal anomaly and hydrothermal springs indicate the Cerro Blanco volcanic complex remains potentially active.Fil: de Silva, Shanaka. State University of Oregon; Estados UnidosFil: Roberege, Julie. Instituto Politécnico Nacional;Fil: Bardelli, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Ortiz Yañez, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Arnosio, José Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Becchio, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentin

    Multi-banded pumice in the Campo de la Piedra Pómez rhyolitic ignimbrite (Southern Puna plateau): Pre-eruptive physical and chemical interactions between mafic and rhyolitic melts

    Get PDF
    The rhyolitic Campo de la Piedra Pómez ignimbrite crops out in the Southern Puna of NW Argentina and it isrelated to the youngest caldera-complex (Cerro Blanco caldera complex) of the Central Andes (73 - 4 kyr). Thepresence of rhyolitic pumice and mafic enclaves with different compositional and textural features, whichvariability can be observed within a single juvenile clast (multiple-banded pumice), characterized these deposits.The enclaves are associated with hybrid (trachydacitic) pumice and sporadic remnants of rhyolitic materialincluded in the trachydacite. To unravel the possible role of the mafic recharge as eruption trigger, the occurrenceof mixing events and the mechanisms of enclave formation, we studied the enclaves and silicic pumicematerial (petrography, whole rock analyses, mineral and glass chemistry) to decipher the magmatic interactionbetween the host rhyolitic melt and the enclave-forming magmas. Results allowed recognizing two main maficrecharge events. During the first episode, the mixing of the rhyolite with the injecting magma generated sporadicdacitic products. Mixing was favored by the relatively high temperature of both the injecting magma and therhyolitic melt, as revealed by clinopyroxene-liquid, plagioclase-liquid and two-pyroxene geothermometers(≥875 °C). The second mafic recharge event involved magma that remained confined at the bottom of thereservoir and crystallized with differential cooling rates. At the interface with the silicic host, the magmagenerated sub-millimetric mineral assemblage in which amphibole has normally zoned rims. Differently, withinthe body of the mafic intrusion, crystallization proceeded with a lower undercooling degree, generating a coarsercrystalline assemblage in which amphibole crystals do not display zoning. The convergence of different thermobarometricmodels (applied to the rhyolite, trachydacite, and enclaves) suggests that these magmas interactedat a crustal depth of ca. 2.7 Kbar, here interpreted as the base of the Campo de la Piedra Pómez rhyoliticreservoir (~10 Km b.s.l.). A time lapse occurred between the last mafic recharge and the eruptive events, wherethe felsic magma cooled down to ~800 °C and the amphibole re-equilibration took place.Fil: Bardelli, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Arnosio, José Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Suzaño, Nestor Omar. Universidad Nacional de Jujuy; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Becchio, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Bertea, Esteban Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentin

    Eruptive styles related to the monogenetic mafic volcanism of Pasto Ventura region, southern Puna, Argentina

    Get PDF
    Uno de los rasgos más sobresalientes de la Puna Austral es el desarrollo de un volcanismo monogenético máfico durante el Neógeno-Cuaternario. Si bien existen numerosos trabajos que discuten la petrogénesis de este particular volcanismo de retroarco, los estudios enfocados en su volcanología física son escasos. En este sentido, este trabajo presenta una caracterización del volcanismo monogenético máfico de la región de Pasto Ventura, ubicada en el borde sudeste de la Puna Austral. Los resultados obtenidos indican que en la región de Pasto Ventura existe una baja densidad de centros eruptivos de pequeño volumen alineados con estructuras tectónicas regionales y una variabilidad significativa en los estilos eruptivos (efusivo, estromboliano, hawaiano, estromboliano violento y freatomagmático) y tipología de estructuras volcánicas (domos, conos de escoria, maares y anillos de tobas). La baja densidad de centros eruptivos se explica por un flujo limitado de magma desde la fuente profunda y la utilización de estructuras tectónicas, orientadas oblicuas a la dirección de compresión máxima, favorables para el ascenso de pequeños volúmenes de magma a través de la corteza superior. La variabilidad de estilos eruptivos responde a una interacción compleja de diferentes factores endógenos y exógenos. La ocurrencia de erupciones efusivas o explosivas depende de las diferencias en las velocidades de ascenso del magma, incluyendo períodos de estancamiento en la corteza superior, que a su vez controlan la eficiencia de la desgasificación y en última instancia la ocurrencia o no de fragmentación. Por otro lado, las condiciones climáticas locales más húmedas (~150 mm/año), que se relacionan con la posición geográfica de la región de Pasto Ventura en el borde oriental de la Puna, favorecen la ocurrencia de actividad freatomagmática, la que a su vez varía en función de la topografía, tipología del substrato y profundidad a la que ocurre la interacción agua-magma.One of the most outstanding features of the Southern Puna is the occurrence of a widespread monogenetic mafic volcanism during Neogene-Quaternary. Despite a number of published papers focusing on the petrogenesis of this back-arc volcanism, works aimed on its physical volcanology are scarce. This paper presents the characterization of the monogenetic mafic volcanism in the Pasto Ventura region, located in the southeast edge of the Southern Puna. The results show that in the Pasto Ventura region there is a low density of small-volume eruptive centers aligned with regional tectonic structures and a significant variability in eruptive styles (effusive, strombolian, hawaiian, violent strombolian and phreatomagmatic) and typology of volcanic structures (domes, scoria cones, maars and tuff rings). The first of these features is explained by a limited magma flow rate from the deep source and the use of favorable tectonic structures (oriented obliquely to the regional maximum compression direction) for the ascent of small volumes of magma through the upper crust. The variability of eruptive styles responds to the complex interaction of different endogenous and exogenous factors. The occurrence of effusive or explosive eruptions depends on the differences in magma ascent rates including periods of stagnation in the upper crust, which in turn control the efficiency of degassing and ultimately the occurrence of fragmentation. On the other hand, the more humid local climatic conditions (~150 mm/year), which are related to the geographical position of the Pasto Ventura region in the eastern edge of the Puna, favor the occurrence of phreatomagmatic activity. Phreatomagmatic activity also varies according to the topography, substrate typology and depth at which water-magma interaction occurs.Fil: Filipovich, Ruben Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Villagrán, Carla Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentin

    Geological map of the Tocomar Basin (Puna Plateau, NW Argentina): Implication for the geothermal system investigation

    Get PDF
    This paper presents a detailed geological map at the 1:20,000 scale of the Tocomar basin in the Central Puna (north-western Argentina), which extends over an area of about 80 km2 and displays the spatial distribution of the Quaternary deposits and the structures that cover the Ordovician basement and the Tertiary sedimentary and volcanic units. The new dataset includes litho-facies descriptions, stratigraphic and structural data and new 234U/230Th ages for travertine rocks. The new reconstructed stratigraphic framework, along with the structural analysis, has revealed the complex evolution of a small extensional basin including a period of prolonged volcanic activity with different eruptive centres and styles. The geological map improves the knowledge of the geology of the Tocomar basin and the local interplay between orogen-parallel thrusts and orogen-oblique fault systems. This contribution represents a fundamental support for in depth research and also for encouraging geothermal exploration and exploitation in the Puna Plateau regionFil: Filipovich, Ruben Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Groppelli, Gianluca. CNR Istituto di Geologia Ambientale e Geoingegneria; ItaliaFil: Ahumada, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Aldega, Luca. Università degli Studi di Roma "La Sapienza"; ItaliaFil: Becchio, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Berardi, Gabriele. Università Roma Tre III; ItaliaFil: Bigi, Sabina. Università degli Studi di Roma "La Sapienza"; ItaliaFil: Caricchi. Chiara. Istituto Nazionale di Geofisica e Vulcanologia; ItaliaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Corrado, Sveva. Università Roma Tre III; ItaliaFil: De Astis, Gianfilippo. Istituto Nazionale di Geofisica e Vulcanologia; ItaliaFil: De Benedetti, Arnaldo Angelo. Università Roma Tre III; ItaliaFil: Invernizzi, Chiara. Universita Degli Di Camerino; ItaliaFil: Norini, Gianluca. CNR Istituto di Geologia Ambientale e Geoingegneria; ItaliaFil: Soligo, Michele. Università Roma Tre III; ItaliaFil: Taviani, Sara. University of Milano-Bicocca; ItaliaFil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Giordano, Guido. CNR Istituto di Geologia Ambientale e Geoingegneria; Italia. Università Roma Tre III; Itali
    corecore