28 research outputs found

    Neuroprotective effects of DHA in Alzheimer’s disease models

    No full text
    Alzheimer’s disease (AD) is a major public health concern in all developped countries. Although the precise cause of AD is still unknown, a growing body of evidence supports the notion that soluble oligomers of amyloid b-peptide (Aβ) may be the proximate effectors of synaptic injuries and neuronal death in the early stages of AD. AD patients display lower levels of docosahexaenoic acid (DHA, C22:6; n-3) in plasma and brain tissues as compared to control subjects of same age. Furthermore, epidemiological studies suggest that high DHA intake might have protective properties against neurodegenerative diseases. These observations are supported by in vivo studies showing that DHA-rich diets limit the synaptic loss and cognitive defects induced by Aβ peptide. Although the molecular basis underlying these neuroprotective effects remains unknown, several mechanisms have been proposed such as (i) regulation of the expression of potentially protective genes, (ii) activation of antiinflammatory pathways, (iii) modulation of functional properties of the synaptic membranes along with changes in their physicochemical and structural features. We recently demonstrated that DHA protects neurons from soluble Aβ oligomer-induced apoptosis. Indeed, DHA pretreatment was observed to significantly increase neuronal survival upon Aβ treatment by preventing cytoskeleton perturbations, caspase activation and apoptosis, as well as by promoting ERK-related survival pathways. These data suggest that DHA enrichment most likely induces changes in neuronal membrane properties with functional outcomes, thereby increasing protection from soluble Aβ oligomers. Such neuroprotective effects could be of major interest in the prevention of AD and other neurodegenerative diseases

    Neuroprotective effects of DHA in Alzheimer’s disease models

    No full text
    Alzheimer’s disease (AD) is a major public health concern in all developped countries. Although the precise cause of AD is still unknown, a growing body of evidence supports the notion that soluble oligomers of amyloid b-peptide (Aβ) may be the proximate effectors of synaptic injuries and neuronal death in the early stages of AD. AD patients display lower levels of docosahexaenoic acid (DHA, C22:6; n-3) in plasma and brain tissues as compared to control subjects of same age. Furthermore, epidemiological studies suggest that high DHA intake might have protective properties against neurodegenerative diseases. These observations are supported by in vivo studies showing that DHA-rich diets limit the synaptic loss and cognitive defects induced by Aβ peptide. Although the molecular basis underlying these neuroprotective effects remains unknown, several mechanisms have been proposed such as (i) regulation of the expression of potentially protective genes, (ii) activation of antiinflammatory pathways, (iii) modulation of functional properties of the synaptic membranes along with changes in their physicochemical and structural features. We recently demonstrated that DHA protects neurons from soluble Aβ oligomer-induced apoptosis. Indeed, DHA pretreatment was observed to significantly increase neuronal survival upon Aβ treatment by preventing cytoskeleton perturbations, caspase activation and apoptosis, as well as by promoting ERK-related survival pathways. These data suggest that DHA enrichment most likely induces changes in neuronal membrane properties with functional outcomes, thereby increasing protection from soluble Aβ oligomers. Such neuroprotective effects could be of major interest in the prevention of AD and other neurodegenerative diseases

    Neuroprotective effects of DHA in Alzheimer’s disease models

    No full text
    Alzheimer’s disease (AD) is a major public health concern in all developped countries. Although the precise cause of AD is still unknown, a growing body of evidence supports the notion that soluble oligomers of amyloid b-peptide (Aβ) may be the proximate effectors of synaptic injuries and neuronal death in the early stages of AD. AD patients display lower levels of docosahexaenoic acid (DHA, C22:6; n-3) in plasma and brain tissues as compared to control subjects of same age. Furthermore, epidemiological studies suggest that high DHA intake might have protective properties against neurodegenerative diseases. These observations are supported by in vivo studies showing that DHA-rich diets limit the synaptic loss and cognitive defects induced by Aβ peptide. Although the molecular basis underlying these neuroprotective effects remains unknown, several mechanisms have been proposed such as (i) regulation of the expression of potentially protective genes, (ii) activation of antiinflammatory pathways, (iii) modulation of functional properties of the synaptic membranes along with changes in their physicochemical and structural features. We recently demonstrated that DHA protects neurons from soluble Aβ oligomer-induced apoptosis. Indeed, DHA pretreatment was observed to significantly increase neuronal survival upon Aβ treatment by preventing cytoskeleton perturbations, caspase activation and apoptosis, as well as by promoting ERK-related survival pathways. These data suggest that DHA enrichment most likely induces changes in neuronal membrane properties with functional outcomes, thereby increasing protection from soluble Aβ oligomers. Such neuroprotective effects could be of major interest in the prevention of AD and other neurodegenerative diseases

    Acide docosahexaénoïque et maladie d’Alzheimer : des raisons d’espérer ?

    No full text
    Alzheimer’s disease is a major public health concern in all developped countries. Although the precise cause of Alzheimer’s disease is still unknown, soluble oligomers of the neurotoxic hydrophobic amyloid-β (Aβ) peptide are known to play a critical role. Aging is associated with a loss of docosahexaenoic acid (DHA) in brain tissues in which it is the main polyunsaturated fatty acid. Epidemiological studies on human populations suggested that diets enriched in ω3 fatty acids are associated with reduced risk of Alzheimer’s disease. Furthermore, patients affected by Alzheimer’s disease display lower levels of DHA in plasma and brain tissues as compared to control subjects of same age. Studies on animals showed that diets enriched with DHA limit the synaptic loss and cognitive defects induced by the Aβ peptide. Several mechanisms have been proposed for this protective effects. DHA can induce the expression of potentially protective genes. Conversion of DHA into neuroprotectins has been shown to be alternatively involved in the protection against the Aβ peptide. Eventually, results have been provided suggesting that particular membrane microdomains could be remodelled and subsequently be involved in the neuroprotective process induced by DHA

    Methyl donor deficiency affects fetal programming of gastric ghrelin cell organization and function in the rat

    No full text
    Methyl donor deficiency (MDD) during pregnancy influences intrauterine development. Ghrelin is expressed in the stomach of fetuses and influences fetal growth, but MDD influence on gastric ghrelin is unknown. We examined the gastric ghrelin system in MDD-induced intrauterine growth retardation. By using specific markers and approaches (such as periodic acid-Schiff, bromodeoxyuridine, homocysteine, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, immunostaining, reverse transcription-polymerase chain reaction), we studied the gastric oxyntic mucosa cellular organization and ghrelin gene expression in the mucosa in 20-day-old fetuses and weanling pups, and plasma ghrelin concentration in weanling rat pups of dams either normally fed or deprived of choline, folate, vitamin B6, and vitamin B12 during gestation and suckling periods. MDD fetuses weighed less than controls; the weight deficit reached 57% at weaning (P < 0.001). Both at the end of gestation and at weaning, they presented with an aberrant gastric oxyntic mucosa formation with loss of cell polarity, anarchic cell migration, abnormal progenitor differentiation, apoptosis, and signs of surface layer erosion. Ghrelin cells were abnormally located in the pit region of oxyntic glands. At weaning, plasma ghrelin levels were decreased (-28%; P < 0.001) despite unchanged mRNA expression in the stomach. This decrease was associated with lower body weight. Taken together, these data indicate that one mechanism through which MDD influences fetal programming is the remodeling of gastric cellular organization, leading to dysfunction of the ghrelin system and dramatic effects on growth

    Non-Injurious Neonatal Hypoxia Confers Resistance to Brain Senescence in Aged Male Rats

    Get PDF
    <div><p>Whereas brief acute or intermittent episodes of hypoxia have been shown to exert a protective role in the central nervous system and to stimulate neurogenesis, other studies suggest that early hypoxia may constitute a risk factor that influences the future development of mental disorders. We therefore investigated the effects of a neonatal “conditioning-like” hypoxia (100% N<sub>2</sub>, 5 min) on the brain and the cognitive outcomes of rats until 720 days of age (physiologic senescence). We confirmed that such a short hypoxia led to brain neurogenesis within the ensuing weeks, along with reduced apoptosis in the hippocampus involving activation of Erk1/2 and repression of p38 and death-associated protein (DAP) kinase. At 21 days of age, increased thicknesses and cell densities were recorded in various subregions, with strong synapsin activation. During aging, previous exposure to neonatal hypoxia was associated with enhanced memory retrieval scores specifically in males, better preservation of their brain integrity than controls, reduced age-related apoptosis, larger hippocampal cell layers, and higher expression of glutamatergic and GABAergic markers. These changes were accompanied with a marked expression of synapsin proteins, mainly of their phosphorylated active forms which constitute major players of synapse function and plasticity, and with increases of their key regulators, i.e. Erk1/2, the transcription factor EGR-1/Zif-268 and Src kinase. Moreover, the significantly higher interactions between PSD-95 scaffolding protein and NMDA receptors measured in the hippocampus of 720-day-old male animals strengthen the conclusion of increased synaptic functional activity and plasticity associated with neonatal hypoxia. Thus, early non-injurious hypoxia may trigger beneficial long term effects conferring higher resistance to senescence in aged male rats, with a better preservation of cognitive functions.</p> </div
    corecore