372 research outputs found

    Prognostic significance of cardiac magnetic resonance imaging: Update 2010

    Get PDF
    Cardiac magnetic resonance imaging (CMR) has become an indispensible imaging technique for the diagnosis and treatment of patients with cardiovascular diseases. Technical advances in the past have rendered CMR unique in the evaluation of cardiovascular anatomy, physiology, and pathophysiology due to its unique ability to produce high resolution tomographic images of the human heart and vessels in any arbitrary orientation, with soft tissue contrast that is superior to competing imaging modalities without the use of ionizing radiation. CMR imaging is the gold standard for assessing left and right ventricular function and for detecting myocardial tissue abnormalities like edema, infarction, or scars. For prognostic reasons abnormal structure and dysfunction of the heart, and the detection of myocardial ischemia and/or myocardial scars are the main targets for CMR imaging. In this review we briefly describe the prognostic significance of several CMR imaging techniques and special CMR parameters in patients with coronary artery disease (CAD), with cardiomyopathies, and with chronic heart failure. Myocardial ischemia proved to be a strong predictor of an adverse outcome in patients with CAD. Microvascular obstruction in acute myocardial infarction is a new and independent parameter of negative left ventricular remodeling and a worse prognosis. Myocardial scars in patients with CAD and unrecognized myocardial infarction heralds a negative outcome. Scar in patients with dilated or hypertrophic cardiomyopathy are a strong predictor of both life-threatening ventricular tachyarrhythmias and prognosis. CMR imaging may improve the assessment of inter- and intraventricular dyssynchrony and provide prognostic information by detecting myocardial scars. (Cardiol J 2010; 17, 6: 549-557

    UNILAC Upgrades for Coulomb Barrier Energy Experiments

    Get PDF
    The GSI linear accelerator UNILAC provides heavy ion beams at Coulomb barrier energies for search and study of super heavy elements. Typical cross-sections of 55 fb require beam doses of 1.4·10¹⁹ according to a beam time of 117 days. Several upgrades will reduce the beam time to only 16 days. A second injection branch with a 28GHz-MS-ECRIS anticipates a factor of 10 in particle intensity. By a new cw rfq-structure all accelerator tanks are suitable for a duty cycle of at least 50% instead of 25% presently. Due to this, thermal power increase of 19 rf-amplifiers eased by higher ion charge states of the ECRIS is necessary. Finally the UNILAC timing system controlling 50Hz pulse-to-pulse operation of up to six beams differing in ion species and energy has to be modified considering beam diagnostics electronics and pulsable magnets. The front end comprising ECRIS, rfq- and IH-structure is cw suitable and will serve as injector for a new future sc-cw-linac

    Status And Computer Simulations For The Front End Of The Proton Injector For FAIR

    Get PDF
    FAIR - the international facility for antiproton and ionresearch – located at GSI in Darmstadt, Germany is oneof the largest research projects worldwide. It will providean antiproton production rate of 7·1010 cooled pbars perhour, which is equivalent to a primary proton beamcurrent of 2·1016 protons per hour. A high intensity protonlinac (p-linac) will be built, with an operating rffrequencyof 325 MHz to accelerate a 70 mA proton beamup to 70 MeV, using conducting crossed-bar H-cavities.The repetition rate is 4 Hz with an ion beam pulse lengthof 36 μs [1]. Developed within a joint French-Germancollaboration - GSI/CEA-SACLAY/IAP – the compactproton linac will be injected by a microwave ion sourceand a low energy beam transport (LEBT). The 2.45 GHzion source allows high brightness ion beams at an energyof 95 keV and will deliver a proton beam current of 100mA at the entrance of the RFQ (Radio FrequencyQuadrupole) within an emittance of 0.3π mm mrad (rms).To check on these parameters computer simulations withTraceWin, IGUN and IBSIMU of the ion extraction andLEBT (Low Energy Beam Transport) are performed

    Znaczenie prognostyczne obrazowania metodą kardiologicznego rezonansu magnetycznego: uaktualnienie informacji na 2010 rok

    Get PDF
    Obrazowanie metodą kardiologicznego rezonansu magnetycznego (CMR) stało się niezbędną techniką w diagnostyce i leczeniu pacjentów z chorobami sercowo-naczyniowymi. Postępy techniczne sprawiły, że CMR jest wyjątkową metodą oceny budowy anatomicznej, fizjologii i patofizjologii układu sercowo-naczyniowego. Pozwala bowiem na uzyskanie obrazów tomograficznych ludzkiego serca i naczyń o wysokiej rozdzielczości w dowolnej płaszczyźnie. Ponadto, kontrast w obrazowaniu tkanek miękkich przewyższa inne konkurencyjne metody, bez konieczności stosowania promieniowania jonizującego. Obrazowanie CMR stanowi referencyjną metodę oceny funkcji lewej i prawej komory serca oraz wykrywania nieprawidłowości tkanki mięśnia sercowego, takich jak obrzęk, martwica czy blizna. Dla celów prognostycznych największe znaczenie w obrazowaniu CMR ma wykrycie nieprawidłowej budowy lub dysfunkcji serca, a także niedokrwienia i/lub blizny pozawałowej w obrębie mięśnia sercowego. W niniejszym artykule krótko opisano znaczenie prognostyczne obrazowania CMR z zastosowaniem kilku technik oraz scharakteryzowano obrazy obserwowane u pacjentów z chorobą wieńcową (CAD), kardiomiopatiami i przewlekłą niewydolnością serca. Niedokrwienie mięśnia sercowego okazało się silnym czynnikiem predykcyjnym niekorzystnych zdarzeń sercowo- -naczyniowych u pacjentów z CAD. Uszkodzenie mikrokrążenia u chorych z ostrym zawałem serca jest nowym, niezależnym czynnikiem zapowiadającym negatywną przebudowę lewej komory serca oraz pogarszającym rokowanie. Również obecność blizny oraz nierozpoznany zawał serca wiążą się z ryzykiem niekorzystnych zdarzeń sercowo-naczyniowych. Obecność włóknienia u pacjentów z kardiomiopatią rozstrzeniową czy przerostową stanowi silny czynnik ryzyka zagrażających życiu tachyarytmii komorowych i obciąża rokowanie. Obrazowanie CMR pozwala na dokładniejszą ocenę między- i śródkomorowej dyssynchronii skurczu i identyfikuje obszary włóknienia w mięśniu sercowym, które mają znaczenie prognostyczne. (Folia Cardiologica Excerpta 2011; 6, 1: 17–27

    In Situ Monitoring of the Catalytic Activity of Cytochrome c Oxidase in a Biomimetic Architecture

    Get PDF
    AbstractCytochrome c oxidase (CcO) from Paracoccus denitrificans was immobilized in a strict orientation via a his-tag attached to subunit I on a gold film and reconstituted in situ into a protein-tethered bilayer lipid membrane. In this orientation, the cytochrome c (cyt c) binding site is directed away from the electrode pointing to the outer side of the protein-tethered bilayer lipid membrane architecture. The CcO can thus be activated by cyt c under aerobic conditions. Catalytic activity was monitored by impedance spectroscopy, as well as cyclic voltammetry. Cathodic and anodic currents of the CcO with cyt c added to the bulk solution were shown to increase under aerobic compared to anaerobic conditions. Catalytic activity was considered in terms of repeated electrochemical oxidation/reduction of the CcO/cyt c complex in the presence of oxygen. The communication of cyt c bound to the CcO with the electrode is discussed in terms of a hopping mechanism through the redox sites of the enzyme. Simulations supporting this hypothesis are included

    Myocardial strain characteristics and outcomes after transcatheter aortic valve replacement

    Get PDF
       Background: Objective of this study was to make an assessment of standard functional and defor­mation parameters (strain) in patients after transcatheter aortic valve replacement (TAVR) by cardiac magnetic resonance imaging (CMR) and the evaluation of their prognostic impact. Methods: Patients undergoing TAVR received CMR on a 1.5 T whole-body scanner at 3 months after the procedure. Deformation parameters (strain, strain rate, velocity, displacement) were assessed in lon­gitudinal, circumferential and radial orientation using a feature tracking approach. Primary outcome measure was defined according to Valve Academic Research Consortium-2 (VARC-2) criteria. Results: Eighty-three patients formed the study population. Deformation parameters were significantly reduced in all three orientations for strain (longitudinal: –12.1 ± 5.4% vs. –15.9 ± 1.96%, p < 0.0001; radial: 34.4 ± 15.3% vs. 47.2 ± 11.4%, p < 0.0001; circumferential: –16.8 ± 4.3% vs. –21.1 ± 2.5%, p < 0.0001) and strain rate (longitudinal: –0.79 ± 0.33%/s vs. –0.91 ± 0.23%/s, p = 0.043; radial: 2.5 ± 1.2%/s vs. 2.9 ± 0.9%, p = 0.067; circumferential: –1.1 ± 0.6%/s vs. –1.3 ± 0.3%/s, p = 0.006) in comparison to a healthy control population. Median follow-up was 614 days. During this period, 13 endpoints occurred (cumulative event rate of 10.7%). Patients with event by trend exhibited poorer strain and strain rate in longitudinal and radial orientation without reaching statistical significance (longitudinal strain: –11.2 ± 5.4% vs. –12.3 ± 5.4%, p = 0.52; longitudinal strain rate: –0.73 ± ± 0.23%/s vs. 0.80 ± 0.35%/s, p = 0.53; radial strain: 29.5 ± 19.6% vs. 35.2 ± 14.5%, p = 0.24; radial strain rate: 2.2 ± 1.6%/s vs. 2.6 ± 1.2%/s, p = 0.31). Conclusions: Assessment of left ventricular deformation parameters by CMR revealed functional abnormalities in comparison to healthy controls. Prognostic significance remains to be further investi­gated.
    corecore