609 research outputs found

    Multifunctions of Bounded Variation, Preliminary Version I

    Full text link
    Consider control systems described by a differential equation with a control term or, more generally, by a differential inclusion with velocity set F(t,x)F(t,x). Certain properties of state trajectories can be derived when, in addition to other hypotheses, it is assumed that F(t,x)F(t,x) is merely measurable w.r.t. the time variable tt. But sometimes a refined analysis requires the imposition of stronger hypotheses regarding the tt dependence of F(t,x)F(t,x). Stronger forms of necessary conditions for state trajectories that minimize a cost can derived, for example, if it is hypothesized that F(t,x)F(t,x) is Lipschitz continuous w.r.t. tt. It has recently become apparent that interesting addition properties of state trajectories can still be derived, when the Lipschitz continuity hypothesis is replaced by the weaker requirement that F(t,x)F(t,x) has bounded variation w.r.t. tt. This paper introduces a new concept of multifunctions F(t,x)F(t,x) that have bounded variation w.r.t. tt near a given state trajectory, of special relevance to control system analysis. Properties of such multifunctions are derived and their significance is illustrated by an application to sensitivity analysis.Comment: Preliminary version of a article which will submitted to a journal for publicatio

    Minimax optimal control

    No full text
    Published versio

    Optimal Control Problems with Mixed and Pure State Constraints

    Get PDF
    This paper provides necessary conditions of optimality for optimal control problems, in which the pathwise constraints comprise both “pure” constraints on the state variable and “mixed” constraints on control and state variables. The proofs are along the lines of earlier analysis for mixed constraint problems, according to which Clarke's theory of “stratified” necessary conditions is applied to a modified optimal control problem resulting from absorbing the mixed constraint into the dynamics; the difference here is that necessary conditions which now take into account the presence of pure state constraints are applied to the modified problem. Necessary conditions are given for a rather general formulation of the problem containing both forms of the constraints, and then these are specialized to problems having special structure. While combined pure state and mixed control/state problems have been previously treated in the literature, the necessary conditions in this paper are proved under less restrictive hypotheses and for novel formulations of the constraints

    Towards two-dimensional metallic behavior at LaAlO3/SrTiO3 interfaces

    Full text link
    Using a low-temperature conductive-tip atomic force microscope in cross-section geometry we have characterized the local transport properties of the metallic electron gas that forms at the interface between LaAlO3 and SrTiO3. At low temperature, we find that the carriers do not spread away from the interface but are confined within ~10 nm, just like at room temperature. Simulations taking into account both the large temperature and electric-field dependence of the permittivity of SrTiO3 predict a confinement over a few nm for sheet carrier densities larger than ~6 10^13 cm-2. We discuss the experimental and simulations results in terms of a multi-band carrier system. Remarkably, the Fermi wavelength estimated from Hall measurements is ~16 nm, indicating that the electron gas in on the verge of two-dimensionality.Comment: Accepted for publication in Physical Review Letter

    Plasmon-pole approximation for semiconductor quantum wire electrons

    Full text link
    We develop the plasmon-pole approximation for an interacting electron gas confined in a semiconductor quantum wire. We argue that the plasmon-pole approximation becomes a more accurate approach in quantum wire systems than in higher dimensional systems because of severe phase-space restrictions on particle-hole excitations in one dimension. As examples, we use the plasmon-pole approximation to calculate the electron self-energy due to the Coulomb interaction and the hot-electron energy relaxation rate due to LO-phonon emission in GaAs quantum wires. We find that the plasmon-pole approximation works extremely well as compared with more complete many-body calculations.Comment: 16 pages, RevTex, figures included. Also available at http://www-cmg.physics.umd.edu/~lzheng

    Possible Metal/Insulator Transition at B=0 in Two Dimensions

    Full text link
    We have studied the zero magnetic field resistivity of unique high- mobility two-dimensional electron system in silicon. At very low electron density (but higher than some sample-dependent critical value, ncr1011n_{cr}\sim 10^{11} cm2^{-2}), CONVENTIONAL WEAK LOCALIZATION IS OVERPOWERED BY A SHARP DROP OF RESISTIVITY BY AN ORDER OF MAGNITUDE with decreasing temperature below 1--2 K. No further evidence for electron localization is seen down to at least 20 mK. For ns<Ncrn_s<N_{cr}, the sample is insulating. The resistivity is empirically found to SCALE WITH TEMPERATURE BOTH BELOW AND ABOVE ncrn_{cr} WITH A SINGLE PARAMETER which approaches zero at ns=ncrn_s=n_{cr} suggesting a metal/ insulator phase transition.Comment: 10 pages; REVTeX v3.0; 3 POSTSCRIPT figures available upon request; to be published in PRB, Rapid Commu

    Plasma dispersion of multisubband electron systems over liquid helium

    Full text link
    Density-density response functions are evaluated for nondegenerate multisubband electron systems in the random-phase approximation for arbitrary wave number and subband index. We consider both quasi-two-dimensional and quasi-one- dimensional systems for electrons confined to the surface of liquid helium. The dispersion relations of longitudinal intrasubband and transverse intersubband modes are calculated at low temperatures and for long wavelengths. We discuss the effects of screening and two-subband occupancy on the plasmon spectrum. The characteristic absorption edge of the intersubband modes is shifted relatively to the single-particle intersubband separation and the depolarization shift correction can be significant at high electron densities

    Finite-temperature Fermi-edge singularity in tunneling studied using random telegraph signals

    Full text link
    We show that random telegraph signals in metal-oxide-silicon transistors at millikelvin temperatures provide a powerful means of investigating tunneling between a two-dimensional electron gas and a single defect state. The tunneling rate shows a peak when the defect level lines up with the Fermi energy, in excellent agreement with theory of the Fermi-edge singularity at finite temperature. This theory also indicates that defect levels are the origin of the dissipative two-state systems observed previously in similar devices.Comment: 5 pages, REVTEX, 3 postscript figures included with epsfi

    Inelastic Coulomb scattering rates due to acoustic and optical plasmon modes in coupled quantum wires

    Full text link
    We report a theoretical study on the inelastic Coulomb scattering rate of an injected electron in two coupled quantum wires in quasi-one-dimensional doped semiconductors. Two peaks appear in the scattering spectrum due to the optical and the acoustic plasmon scattering in the system. We find that the scattering rate due to the optical plasmon mode is similar to that in a single wire but the acoustic plasmon scattering depends crucially on its dispersion relation at small qq. Furthermore, the effects of tunneling between the two wires are studied on the inelastic Coulomb scattering rate. We show that a weak tunneling can strongly affect the acoustic plasmon scattering.Comment: 6 Postscript figure
    corecore