7,646 research outputs found

    Iterated Differential Forms II: Riemannian Geometry Revisited

    Full text link
    A natural extension of Riemannian geometry to a much wider context is presented on the basis of the iterated differential form formalism developed in math.DG/0605113 and an application to general relativity is given.Comment: 12 pages, extended version of the published note Dokl. Math. 73, n. 2 (2006) 18

    Analytical models of probability distribution and excess noise factor of Solid State Photomultiplier signals with crosstalk

    Full text link
    Silicon Photomultipliers (SiPM), also so-called Solid State Photomultipliers (SSPM), are based on Geiger mode avalanche breakdown limited by strong negative feedback. SSPM can detect and resolve single photons due to high gain and ultra-low excess noise of avalanche multiplication in this mode. Crosstalk and afterpulsing processes associated with the high gain introduce specific excess noise and deteriorate photon number resolution of the SSPM. Probabilistic features of these processes are widely studied because of its high importance for the SSPM design, characterization, optimization and application, but the process modeling is mostly based on Monte Carlo simulations and numerical methods. In this study, crosstalk is considered to be a branching Poisson process, and analytical models of probability distribution and excess noise factor (ENF) of SSPM signals based on the Borel distribution as an advance on the geometric distribution models are presented and discussed. The models are found to be in a good agreement with the experimental probability distributions for dark counts and a few photon spectrums in a wide range of fired pixels number as well as with observed super-linear behavior of crosstalk ENF.Comment: 10 pages, 2 tables, 3 figures, Reported at 6th International Conference on "New Developments In Photodetection - NDIP11

    Low-temperature specific heat of real crystals: Possibility of leading contribution of optical and short-wavelength acoustical vibrations

    Full text link
    We point out that the repeatedly reported glass-like properties of crystalline materials are not necessarily associated with localized (or quasilocalized) excitations. In real crystals, optical and short-wavelength acoustical vibrations remain damped due to defects down to zero temperature. If such a damping is frequency-independent, e.g. due to planar defects or charged defects, these optical and short-wavelength acoustical vibrations yield a linear-in-TT contribution to the low-temperature specific heat of the crystal lattices. At low enough temperatures such a contribution will prevail over that of the long-wavelength acoustical vibrations (Debye contribution). The crossover between the linear and the Debye regime takes place at TNT^* \propto \sqrt N, where NN is the concentration of the defects responsible for the damping. Estimates show that this crossover could be observable.Comment: 5 pages. v4: Error in Appendix corrected, which does not change the main results of the pape
    corecore