19 research outputs found

    Brain aging: more of the same!?

    Get PDF

    Offspring Birth Weight Is Associated with Specific Preconception Maternal Food Group Intake:Data from a Linked Population-Based Birth Cohort

    Get PDF
    The preconception period has been recognized as one of the earliest sensitive windows for human development. Maternal dietary intake during this period may influence the oocyte quality, as well as placenta and early embryonic development during the first trimester of pregnancy. Previous studies have found associations between macronutrient intake during preconception and pregnancy outcomes. However, as food products consist of multiple macro- and micronutrients, it is difficult to relate this to dietary intake behavior. Therefore, the aim of this study was to investigate the association between intake of specific food groups during the preconception period with birth weight, using data from the Perined-Lifelines linked birth cohort. The Perined-Lifelines birth cohort consists of women who delivered a live-born infant at term after being enrolled in a large population-based cohort study (The Lifelines Cohort). Information on birth outcome was obtained by linkage to the Dutch perinatal registry (Perined). In total, we included 1698 women with data available on birth weight of the offspring and reliable detailed information on dietary intake using a semi-quantitative food frequency questionnaire obtained before pregnancy. Based on the 2015 Dutch Dietary Guidelines and recent literature 22 food groups were formulated. Birth weight was converted into gestational age-adjusted z-scores. Multivariable linear regression was performed, adjusted for intake of other food groups and covariates (maternal BMI, maternal age, smoking, alcohol, education level, urbanization level, parity, sex of newborn, ethnicity). Linear regression analysis, adjusted for covariates and intake of energy (in kcal) (adjusted z score [95% CI], P) showed that intake of food groups "artificially sweetened products" and "vegetables" was associated with increased birth weight (resp. (β = 0.001 [95% CI 0.000 to 0.001, p = 0.002]), (β = 0.002 [95% CI 0.000 to 0.003, p = 0.03])). Intake of food group "eggs" was associated with decreased birth weight (β = -0.093 [95% CI -0.174 to -0.013, p = 0.02]). Intake in food groups was expressed in 10 g per 1000 kcal to be able to draw conclusions on clinical relevance given the bigger portion size of the food groups. In particular, preconception intake of "artificially sweetened products" was shown to be associated with increased birth weight. Artificial sweeteners were introduced into our diets with the intention to reduce caloric intake and normalize blood glucose levels, without compromising on the preference for sweet food products. Our findings highlight the need to better understand how artificial sweeteners may affect the metabolism of the mother and her offspring already from preconception onwards

    Associations between preconception macronutrient intake and birth weight across strata of maternal BMI

    Get PDF
    Introduction Maternal nutrition during pregnancy is linked with birth outcomes including fetal growth, birth weight, congenital anomalies and long-term health through intra-uterine programming. However, a woman's nutritional status before pregnancy is a strong determinant in early embryo-placental development, and subsequently outcomes for both mother and child. Therefore, the aim of this study was to investigate the association between dietary macronutrient intake in the preconception period with birth weight. Methods We studied a group of 1698 women from the Dutch Perined-Lifelines linked birth cohort with reliable detailed information on preconception dietary macronutrient intake (using a semi quantitative food frequency questionnaire) and data available on birth weight of the offspring. Birth weight was converted into gestational age adjusted z-scores, and macronutrient intake was adjusted for total energy intake using the nutrient residual method. Preconception BMI was converted into cohort-based quintiles. Multivariable linear regression was performed, adjusted for other macronutrients and covariates. Results Mean maternal age was 29.5 years (SD 3.9), preconception BMI: 24.7 kg/m(2) (SD 4.2) and median daily energy intake was 1812 kcal (IQR 1544-2140). Mean birth weight was 3578 grams (SD 472). When adjusted for covariates, a significant association (adjusted z score [95% CI], P) between polysaccharides and birth weight was shown (0.08 [0.01-0.15], 0.03). When linear regression analyses were performed within cohort-based quintiles of maternal BMI, positive significant associations between total protein, animal protein, fat, total carbohydrates, mono-disaccharides and polysaccharides with birth weight were shown in the lowest quintile of BMI independent of energy intake, intake of other macronutrients and covariates. Conclusion Out of all macronutrients studied, polysaccharides showed the strongest association with birth weight, independent of energy intake and other covariates. Our study might suggest that specifically in women with low preconception BMI a larger amount of macronutrient intake was associated with increased birth weight. We recommend that any dietary assessment and advise during preconception should be customized to preconception weight status of the women

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF

    The aging brain: a tale as old as time

    Get PDF
    The aging process is biologically complex and there is a large variation in the effects of aging on the human body between as well as within individuals. Similarly, the aging brain is known for its large intra- and inter-individual variability in functioning and structural changes that occur with advancing age. In a nutshell, the brain shrinks with advancing age as a result of brain atrophy and age-related changes in cognition vary considerably across cognitive domains and across individuals. An important challenge in brain aging research in particular is the overlap in changes in brain structure and function in aging and neurodegenerative disease, such as Alzheimer's disease. Though challenging, this overlap also underlines the importance of understanding brain aging to ultimately improve our understanding of neurodegenerative disease. Therefore, the aim of this thesis was to quantify brain aging trajectories and brain aging patterns. These trajectories were used to investigate the association between risk factors and brain aging. Furthermore, I assessed how brain aging can inform disease assessment and prediction.

    Hearing loss and cognitive decline in the general population: a prospective cohort study

    Get PDF
    Background: Previous studies identifying hearing loss as a promising modifiable risk factor for cognitive decline mostly adjusted for baseline age solely. As such a faster cognitive decline at a higher age, which is expected considering the non-linear relationship between cognition and age, may have been overlooked. Therefore it remains uncertain whether effects of hearing loss on cognitive decline extend beyond age-related declines of cognitive function. Methods: 3,590 non-demented participants were eligible for analysis at baseline, and a maximum of 837 participants were eligible for the longitudinal analysis. Hearing loss was defined at baseline. Cognitive function was measured at baseline and at follow-up (4.4 years [SD: 0.2]). Multivariable linear regression analysis was used for the cross-sectional analysis. Linear mixed models were used to assess the longitudinal association between hearing loss and cognitive decline over time while adjusting for confounders and the interaction of age and follow-up time. Results: Hearing loss was associated with lower cognitive function at baseline. Moreover, hearing loss was associated with accelerated cognitive decline over time on a memory test. After additionally adjusting for the interaction between age and follow-up time, we found that hearing loss did not accelerate cognitive decline anymore. Conclusions: Hearing loss was associated with lower cognitive function at baseline and accelerated cognitive decline on a memory test. The association between hearing loss and accelerated cognitive decline was non-significant after additional adjustment for non-linear age effects. More evidence is needed to ensure the role of hearing loss as a modifiable risk factor for cognitive decline
    corecore