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Prologue
When I think about the aging process, the allusion “tale as old as time”, for the
fellow Disney-enthusiasts known as the opening line from a song sung by Mrs. Potts,
the enchanted teapot, comes to mind. A tale as old as time, meaning a tale that is
ancient, timeless and its form is highly dependent on the context of that specific time.

Understanding the aging process has been a quest that dates back to the beginning of
philosophical and medical thinking. Like it still is today, the perspectives on aging
could be described as a balancing act between the ideas of illness and of natural
decline. The definition of what is normal or healthy and what is disease is so
intertwined, that one cannot exist without the other. Though the focus of research in
the field of medicine has mostly focussed on understanding diseases rather than
natural decline. I hope that after reading this thesis, you agree with me that the field
of aging and brain aging is a fascinating and crucial one.
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“Research on aging has emphasized losses”

- John W. Rowe and Robert L. Kahn, 1987 in Human Aging: Usual and
Successful -

In the nineteenth and twentieth century, in general the ‘normal’ aging process was
considered the age-related physiologic, cognitive and sociologic changes that
occurred, in the absence of disease. Examples of age-related changes, or as Rowe
and Kahn described them: losses, were: loss of hearing, vision, bone density, lung
function, renal function, increase in systolic blood pressure and decline in cognitive
and motor function.

Though this concept of normality has provided an important foundation for our
understanding of the aging process today, the emphasis on normality had major
limitations, as was pointed out by Rowe and Kahn1 in 1987:

“In short, the emphasis on “normal” aging focuses attention on learning
what most older people do and do not do, what physiologic and psychologic

states are typical. It tends to create a gerontology of the usual”.

They stated that by defining normal aging with merely absence of (identifiable)
disease, the heterogeneity among the non-diseased aging individuals is neglected.
The division between diseased and non-diseased fails to recognize this variance.
They urged to focus on this heterogeneity and the development of an additional
conceptual distinction within the normal category. To avoid creating a “gerontology
of the usual”, they suggested to make a distinction between usual and successful
aging. With the concept of successful aging they hoped to stimulate research on the
criteria and determinants of successful aging, and identify proper targets for
interventions with "normal" elderly. Though there is still no consensual definition of
healthy or successful aging2, Rowe and Kahn’s view on aging and their concept of
successful aging has been a major contributor to moving the aging field to where it
is today.

In aging and brain aging research it all boils down to the question what is considered
to be the “norm” (e.g. normal, physiological, average, successful, healthy), for the
aging process that you are researching. What someone considers to be “normal” is
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highly dependent on a person’s values, background, culture, environment and
experiences. However, the lack of a universal definition of “normal” brain aging
should not stop us from trying to understand brain aging, to ultimately unravel when,
how and where in the brain deviations from the physiological aging take place
towards pathophysiological degeneration and ultimately clinical disease.

The Aging Brain
The aging process is biologically complex and there is a large variation in the effects
of aging on the human body between as well as within individuals. Similarly,
functional and structural changes in the brain that occur with advancing age show
large intra- and inter-individual variability. Irrespective of the definition of “normal”
brain aging and the interpretation of its variability, what we generally observe with
advancing age is a shrinking brain, called brain atrophy. Brain atrophy, also known
as cerebral atrophy, is the macroscopic manifestation of the loss of neurons,
synapses, glia and demyelination that occurs on a microscopic level. On structural
brain imaging, cerebral atrophy is reflected in the loss of whole brain or regional
brain tissue volume. Zooming in on the white matter of the brain, which embodies
the connections and communication of cortical regions with each other and with
subcortical regions, loss of microstructural integrity and ultimately the formation of
lesions are associated with advancing age. Age-related changes in cognition vary
considerable across cognitive domains and across individuals.3 Basic cognitive
functions that are most affected by age are memory and attention. These fundamental
cognitive functions are thought to account for a large part of the variance observed
in higher-level cognitive processes.

Similar to aging in general, conceptualizing brain aging comes with many
challenges. The large variability in the effects of aging on brain structure and
function leads to a broad spectrum of age-related changes. An important challenge
is to define the part(s) of the spectrum where “normal” brain aging ends and
(pre)clinical disease starts. Taking Alzheimer’s disease as an example,
macrostructural brain changes in Alzheimer’s disease are typically characterized by
severe medial temporal lobe atrophy.4,5 Furthermore, cognitive decline, often first
recognized as memory impairment, is a typical feature of Alzheimer’s disease.5 With
brain atrophy being a hallmark of structural brain aging and loss of memory function
a hallmark of cognitive aging, the challenges that arise in distinguishing age-related
changes from (undetected) disease are evident.6 Though challenging, this overlap
also underlines the importance of understanding brain aging to ultimately improve
our understanding of neurodegenerative disease.

11
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I believe that by estimating brain aging trajectories, the brain aging process can be
captured and inform us on the timing and sequence of changes in the brain. The
definition of an aging trajectory in the context of this thesis is the average course of
a marker with age. Using mixed models, both participants with a single
measurement and those with multiple measurements, with unstructured time
intervals, are used to estimate the average aging trajectory. This trajectory represents
between-subject differences at different ages, rather than within-subject differences.

The aging trajectories are estimated based on longitudinal data from study
participants without neurodegenerative diseases. It goes without saying that different
definitions of ‘normal’ aging, based on the same data, could result in different
trajectories. By using these trajectories to estimate brain aging patterns rather than
focussing on the trajectories themselves, I believe that the variation in normal aging
definitions will not retain us from better understanding the brain aging process.
Furthermore, the descriptive nature of the work presented in this thesis allows for
translation to different normal aging definitions.

With brain aging trajectories and brain aging patterns, we can subsequently
investigate the effects of different determinants on brain aging. This could bring us
one step closer towards understanding the sources of variability, and their
implications. Furthermore, improving our understanding of the timing and sequence
of changes in the brain with aging could provide a new perspective on the health-
disease continuum and ultimately improve our understanding of disease.

Overall aim and outline of this thesis

The overall aim of this thesis is to gain insight in the brain aging patterns, to
ultimately improve our understanding of the continuum of aging and age-related
diseases.

The specific objectives of this thesis are:

1. Quantification of brain aging trajectories of structural imaging markers,
cognitive function and motor function, and the brain aging patterns based on
these markers.

2. Determining the association between risk factors and the brain aging
trajectories.

3. Determining how brain aging can inform disease assessment and prediction.

Chapter 2, devoted to the first objective, focusses on the quantification of brain
aging trajectories and the corresponding brain aging pattern, in a population free of
overt neurological disease. In Chapter 2.1 I estimated brain aging trajectories of
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structural imaging markers and based on these markers I describe the average pattern
of brain aging. In Chapter 2.2 brain aging trajectories of cognitive and motor
function were estimated and, similar to Chapter 2.1, I determined the average
pattern of changes in cognitive and motor function with aging. In Chapter 2.3 I
assessed the relation between cortical gyrification and age and cognition in older
adult. In Chapter 2.4 the focus has shifted from the average brain aging pattern, to
identifying potential different brain aging patterns present within the population. I
used a data-driven disease progression model to identify different brain aging
subtypes based on structural imaging markers. In Chapter 2.5 I discuss the
importance and potential of using longitudinal data for unravelling the brain aging
process.

Chapter 3 focusses on determinants of brain aging in the general population and is
devoted to objective 2. In Chapter 3.1 I studied the relation between intracranial
arteriosclerosis and brain aging trajectories of structural imaging markers. To deal
with variating time between the measurement of intracranial calcification (using
computed tomography), and the repeated structural imaging markers (using MRI), I
determined calcification percentile curves to estimate the age-specific calcification
burden. In Chapter 3.2 I assessed the relation between cardiovascular health factors
and APOE ε4 carriership and the brain aging trajectories of structural imaging
markers. In Chapter 3.3 I investigated the relation between hearing loss and
cognitive decline. Hearing loss is considered as a promising modifiable risk factor
for cognitive decline and dementia. Since both hearing loss and cognitive decline are
highly related to aging, this chapter is focussed on investigating whether hearing loss
accelerates cognitive decline with aging.

Chapter 4 focusses on how brain aging can inform disease assessment and
prediction, and is devoted to objective 3. In Chapter 4.1 I studied the impact of
using normative brain volumetry derived from different reference population. I
compared percentile curves of subcortical brain structure volumes between three
different reference populations. Furthermore I evaluated the impact of these
differences on single-subject diagnostic assessment in dementia. In Chapter 4.2 I
assessed the use of a data-driven disease progression model for the prediction of
Alzheimer’s disease in a population-based cohort. I used a recently developed data-
driven disease progression model, called co-initialized Discriminative Event-Based
Model (co-init DEBM), to construct APOE-specific disease timelines based on
structural imaging markers in a case-control setting. Furthermore, I evaluated the
generalizability from these disease timelines to a population-based setting. Finally, I
investigated if progression along these disease timelines is predictive of Alzheimer’s
disease.

13
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Introduction
The aging brain undergoes various structural changes, which can manifest
themselves clinically in corresponding functional changes. Much research has been
dedicated to understanding these brain changes because these do not only inform
about healthy brain aging, but also provide a reference point against which
pathologic changes can be contrasted.

The development of noninvasive imaging techniques has fueled research into the
aging brain in healthy individuals. Since magnetic resonance imaging (MRI) was
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With aging, the brain undergoes several structural changes. These changes
reflect the normal aging process and are therefore not necessarily pathologic. In
fact, better understanding of these normal changes is an important cornerstone
to also disentangle pathologic changes. Several studies have investigated
normal brain aging, both cross-sectional and longitudinal, and focused on a
broad range of magnetic resonance imaging (MRI) markers. This study aims to
comprise the different aspects in brain aging, by performing a comprehensive
longitudinal assessment of brain aging, providing trajectories of volumetric
(global and lobar; subcortical and cortical), microstructural, and focal (presence
of microbleeds, lacunar or cortical infarcts) brain imaging markers in aging and
the sequence in which these markers change in aging. Trajectories were
calculated on 10,755 MRI scans that were acquired between 2005 and 2016
among 5286 persons aged 45 years and older from the population-based
Rotterdam Study. The average number of MRI scans per participant was 2 scans
(ranging from 1 to 4 scans), with a mean interval between MRI scans of 3.3
years (ranging from 0.2 to 9.5 years) and an average follow-up time of 5.2 years
(ranging from 0.3 to 9.8 years). We found that trajectories of the different
volumetric, microstructural, and focal markers show nonlinear curves, with
accelerating change with advancing age. We found earlier acceleration of
change in global and lobar volumetric and microstructural markers in men
compared with women. For subcortical and cortical volumes, results show a
mix of more linear and nonlinear trajectories, either increasing, decreasing, or
stable over age for the subcortical and cortical volume and thickness.
Differences between men and women are visible in several parcellations;
however, the direction of these differences is mixed. The presence of focal
markers show a nonlinear increase with age, with men having a higher
probability for cortical or lacunar infarcts. The data presented in this study
provide insight into the normal aging process in the brain, and its variability.



first introduced in biomedical research in the 1980s, several pioneers performed
small studies using this novel technique to assess macrostructural brain changes in
aging.7–12 After approximately one decade, large cross-sectional studies and
population-based studies followed to inform about, for example, sex differences and
brain changes in a large sample of healthy volunteers, instead of specific control
subjects.13–15 Simultaneous developments in MRI scanners and software increased
the accuracy of structural (volumetric) measurements and enabled measuring
microstructural (white matter organization) changes in aging.16–22 In the last 15 years,
more and more longitudinal studies have been performed to estimate the rate of brain
changes in aging or investigating possible causes and effects of these changes.23–35

Overall, these studies show that the vulnerability of the brain to aging is
heterogeneous. Furthermore, some studies show sex differences in the effect of age
on the imaging markers31,33–35, whereas others do not31,35.

Against the background, we aimed to comprise these different aspects in brain aging,
by performing a comprehensive longitudinal assessment of brain aging in a middle-
and old-aged population. We examined trajectories of volumetric, microstructural,
and focal MRI markers in aging across a wide age range (45–95 years) in men and
women based on a large prospective population-based cohort study with over 10,000
MRI scans. Furthermore, we analyzed the sequence in which MRI markers change
in aging, so as to provide an overview of the concurrency of the changing imaging
markers.

Methods and Materials

Study population

This study is embedded within the Rotterdam Study, an ongoing prospective
population-based study designed to investigate causes and consequences of age-
related diseases. The design of the Rotterdam Study has been described previously.36

Since 2005, brain MRI was implemented in the core Rotterdam Study protocol, and
participants are invited every 3–4 years for repeat imaging. In Figure 1, a flowchart
of the inclusion of the MRI scans is shown. In this study, all available MRI scans
from the Rotterdam Study that were acquired since August 2005 (date of installment
of the MRI scanner in the research center) were included (n = 12,023 scans). Scans
from participants with dementia or Parkinson's disease that were performed after
clinical diagnosis were excluded (n = 110 MRI scans from 94 participants). Scans
from participants with a symptomatic stroke that were performed after the event
were excluded (n = 385 scans from 235 participants). Furthermore, MRI scans with
incomplete acquisition, scans with artifacts hampering automated processing,
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unreliable tissue segmentation (or unreliable intracranial volume segmentation in
case for the focal marker analysis), and incomplete ratings of microbleeds, cortical,
and lacunar infarcts were excluded (volumetric and microstructural markers
analysis: n = 543 MRI scans, 4.7%; focal markers analysis: n = 42, 0.4%). Finally,
all scans with MRI-defined cortical infarcts were excluded from volumetric and
microstructural analysis (n = 230 MRI scans), but not for the focal marker analysis.
In total, 10,755 MRI scans from 5286 participants were available for analysis of the
volumetric and microstructural imaging markers, and 11,486 MRI scans from 5522
participants were available for analysis of focal markers.

Figure 1.A flowchart of the inclusion of MRI scans for both the analysis of volumetric and
microstructural markers and the analysis of focal markers is shown.
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MRI acquisition and processing

Brain MRI scanning was performed in all participants during the entire study period
on the same single 1.5-Tesla MRI scanner (GE Signa Excite; GE Healthcare,
Milwaukee, USA), keeping hardware and software setup unchanged over the entire
study period. The scan protocol and sequence details have been described
elsewhere.37

For brain volumetry, T1-weighted (voxel size 0.49 × 0.49 × 1.6 mm3), proton
density–weighted (voxel size 0.6 × 0.98 × 1.6 mm3), and the fluid-attenuated
inversion recovery (FLAIR) (voxel size 0.78 × 1.12 × 2.5 mm3) scans were used for
automated segmentation of supratentorial gray matter, white matter, cerebrospinal
fluid (CSF), and white matter lesions.38,39 All scans were transformed to the high-
resolution data set (256 × 256 × 128) using tri-linear interpolation. Automated
processing tools from the Brain Imaging Center, Montreal Neurological Institute and
McGill University (www.bic.mni.mcgill.ca) were used to coregister the MRI data
(based on mutual information) and subsequently normalize the intensities for each
feature image volume using N3.40 All segmentations were visually inspected and
manually corrected if needed. Total brain volume was the sum of gray matter,
normal-appearing white matter, and white matter lesion volume. Supratentorial
intracranial volume was estimated by summing gray and white matter (consisting of
the sum of normal-appearing white matter and white matter lesion volume) and CSF
volumes.38 For measurement of lobar volumes, an atlas was created in which the
lobes were labeled according to a slightly modified version of the segmentation
protocol, as described by Bokde et al.41,42 Subsequently, nonrigid transformation was
used to transform this atlas to each brain as described previously42, to obtain volume
for each lobe. Furthermore, T1-weighted MR images were processed using
FreeSurfer43 (version 5.1) to obtain cortical parcellations (n = 33) and subcortical
structure volume of the hippocampus, putamen, amygdala, pallidum, and caudate
nucleus.

For microstructural measures, diffusion tensor imaging (voxel size 3.3 × 2.2 × 3.5
mm3) was used. A single shot, diffusion-weighted spin echo echo-planar imaging
sequence was performed with maximum b value of 1000 s/mm2 in 25 noncollinear
directions; 3 b0 volumes were acquired without diffusion weighting. Diffusion data
were preprocessed using a standardized processing pipeline196, yielding (in
combination with the tissue segmentation) global mean fractional anisotropy and
mean diffusivity (MD) in the normal-appearing white matter (voxels of white matter
excluding white matter lesions).

21
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For (dichotomous) focal lesions, infarcts showing involvement of cortical gray
matter were classified as cortical infarcts. Lacunar infarcts were defined by focal loss
of noncortical tissue (size ≥ 3 and <15 mm) with signal intensity similar to CSF on
all sequences, and when located supratentorially with a hyperintense rim on the
FLAIR sequence.44 To differentiate lacunar infarcts from dilated perivascular spaces,
symmetry of the lesions, sharp demarcation, and absence of a hyperintense rim on
the FLAIR sequence supported presence of a dilated perivascular space.45 Cerebral
microbleeds were rated on a 3-dimensional, T2*-weighted gradient-recalled echo
MRI scan (voxel size 0.78 × 1.12 × 1.6 mm3) as focal areas of very low signal
intensity.37 Note that although white matter lesions can be considered focal markers
as well, we measured these continuously in the present study, and therefore for the
purpose of visualization and comparison with other volumetric markers, we
categorized white matter lesion volume as a volumetric marker.

Statistical analysis

Trajectories of global and lobar volumetric, cortical thickness, cortical volume and
subcortical structure volume MRI markers, and microstructural measures were
assessed using linear mixed models with random intercepts and slopes. Cortical and
subcortical structure volumes and cortical thickness was the average of the left and
right hemisphere. The global volumetric, microstructural, and subcortical structure
volume markers that were modeled were white matter volume, white matter lesion
volume, normal-appearing white matter volume, gray matter volume, CSF volume,
total brain volume, hippocampus, putamen, amygdala, pallidum, and caudate
nucleus volume, global fractional anisotropy, and global MD. The linear mixed
models were performed using the “lme” function from the R-package “nlme”.46 In
each model, age of the participant at each measurement was used as the time
variable. To account for possible nonlinear trajectories, exploratory analysis was
performed to assess whether splines of age (with increasing degrees of freedom)
improved the model compared with the linear age term. As a result from these
analyses, splines of age with 1 knot were used in all models. Other covariates in the
model were intracranial volume and sex. The interaction of sex and the spline
coefficients of age was integrated into the model to test for possible slope differences
between men and women. White matter lesion volume was natural log-transformed
to account for the skewness of the measure distribution.

Next, trajectories of global and lobar volumetric, hippocampus volume, and
microstructural MRI markers were Z-transformed to compare the temporal course of
MRI marker change in aging. We selected these MRI markers for this analysis as
these are currently the most extensively studied in aging and neurodegeneration,
with relevant clinical interpretation. The transformation from absolute values to Z-
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scores was performed by subtracting the predicted curve value at age 45 years from
the predicted curve at a certain age and dividing it by the standard deviation of the
residuals of the linear mixed model. In case of an increasing trajectory (e.g., in white
matter lesion volume), the Z-score trajectory was multiplied with −1 to orient all
trajectories to the same direction as those of markers that decrease with age. The
sequence with which imaging markers change in aging after age 45 years was
determined by calculating the age at which a −2SD change compared with the mean
population value at age 45 years was reached (Z-score of −2). We assessed the
sequence of change for men and women separately.

For focal lesions, the probability of having one or more microbleeds, cortical
infarcts, or lacunar infarcts was assessed using generalized estimating equations
(GEEs). The GEE was performed using the “geeglm” function from the R-package
“geepack”.47 In the GEE, natural cubic splines of age with 1 knot were used as the
time variable. The covariates in the model were the same as in the linear mixed
model, namely intracranial volume, gender, and the interaction of the splines of age
and gender.

As sensitivity analysis, all analyses were performed after exclusion of scans before
dementia and Parkinson's diagnosis and scans before a stroke event to investigate the
effect of including preclinical scans. Furthermore, all analysis were performed after
exclusion of participants with only a single MRI scan, to investigate the effect of
possible population differences between participants with a single scan and those
with multiple scans.

Results
Characteristics at first MRI scan of the participants included for studying the
volumetric and microstructural markers and the focal markers are presented in Table
1. In Supplemental Table 1, the presence of several cardiovascular risk factors in our
study population is shown. For studying the volumetric and microstructural markers,
5286 participants were included. The mean age at first scan was 64.4 years (range
45.7–97.9 years), and 2962 (56.0%) participants were women. The mean intracranial
volume was 1138.2 mL (range 813.6–1699.4 mL). Of 5286 participants, 1852
participants had a single brain MRI scan, 1456 participants had 2 MRI scans, 1921
participants had 3 MRI scans, and 57 participants had 4 MRI scans available for
analysis. The average follow-up time was 5.2 years (range 0.3–9.8). The mean scan
interval between the first and second, second and third, and third and fourth MRI
scan was, respectively, 4.0 (0.66), 1.9 (0.71), and 4.4 years (0.18). For studying the
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focal markers, 5522 participants were included. Of these 5522 participants, 1055,
375, and 144 participants had, respectively, one or more microbleeds, lacunar
infarcts, and cortical infarcts at their first scan.

Trajectories of global volumetric and microstructural markers

Figure 2 depicts the estimated trajectories of global volumetric, microstructural, and
subcortical volume markers, for men and women separately. Furthermore,
Supplemental Table 2 shows the trajectory values corresponding to the trajectories
at age 45 and 95 years. White matter volume, normal-appearing white matter
volume, gray matter volume, total brain volume, global fractional anisotropy,
hippocampus volume, amygdala volume, and pallidum volume all showed a
nonlinear decrease with age, whereas white matter lesion volume, CSF volume, and
global MD increased (nonlinearly) with age. After approximately age 50–55 years,
most trajectories showed an accelerated change, which was most pronounced for
total brain volume, CSF volume, hippocampus volume, and MD (Figure 2). Gray
matter volume and putamen volume showed a more linear decrease with age
compared with the other imaging markers. Caudate nucleus volume shows a more
U-shaped curve with an increasing volume at increasing age, with the deflection
point around age 65 years.

In Figure 3A and B, the trajectories of the MRI markers are shown in Z-scores for
men and women separately. In Supplemental Table 2, the corresponding Z-values at
age 45 and 95 years are given. For both sexes, CSF and total brain volume reached
the largest total change in Z-score (men −6.1; women −4.8), compared with the other
MRI markers. There was significant interaction between age and sex for all markers,
except for global FA, global MD, and amygdala volume (p-values of the age and sex
interaction is given in Supplemental Table 2). In general, the trajectories show an
earlier acceleration of changing markers in men compared with women (Figure 3C).

Lobe-specific trajectories of volumetric markers and cortical
parcellations

The lobe-specific trajectories of volumetric markers for men and women are shown
in Supplemental Figure 2 (absolute values) and Supplemental Figure 3 (Z-scores).
After taking into account differences in intracranial volume, the frontal lobe showed
the largest relative change in each of the MRI markers, except for gray matter
volume in men, where temporal gray matter showed the largest relative change. The
occipital lobe showed the smallest change in each of the MRI markers, except for
gray matter volume and for total lobar volume in women, where the parietal lobe
showed the smallest relative change.
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Characteristic Analysis of volumetric
and microstructural
markers (N = 5,286)

Analysis of
focal markers
(N = 5,522)

Age at first scan, years 64.4 (10.7) 64.6 (10.8)
Age in men, years 64.2 (10.5) 64.4 (10.6)
Age in women, years 64.6 (10.8) 64.8 (10.9)

Sex, women 2962 (56.0) 3079 (55.8)
Intra-cranial volume, ml 1138.2 (115.7) 1138.4 (116.5)
Scan interval ,years 3.3 (1.2) 3.3 (1.2)
Follow-up time, years 5.2 (1.1) 5.2 (1.0)
Availability of MRI scans with acceptable
segmentation
Number of participants with a single MRI scan 1852 (35.0) 1843 (33.4)
Number of participants with two MRI scans 1456 (27.5) 1468 (26.6)
Number of participants with three MRI scans 1921 (36.3) 2137 (38.7)
Number of participants with four MRI scans 57 (1.1) 74 (1.3)

Number of available MRI scans with acceptable
segmentation

10755 11486

Baseline global FAa 0.34 (0.015)
Baseline global MD, 10-3 mm2/seca 0.74 (0.029)
Baseline total white matter volume, ml 407.3 (59.8)
Baseline normal appearing white matter
volume, ml

401.3 (61.3)

Baseline white matter lesion volumeb, ml 2.9 (1.6-6.0)
Baseline grey matter volume, ml 529.7 (54.9)
Baseline cerebrospinal fluid volume, ml 198.9 (54.9)
Baseline total brain volume, ml 937.0 (100.1)
Baseline hippocampus volumea, ml 3.9 (0.52)
Baseline putamen volumea, ml 4.6 (0.61)
Baseline amygdala volumea, ml 1.4 (0.19)
Baseline pallidum volumea, ml 1.5 (0.23)
Baseline caudate nucleus volumea, ml 3.4 (0.52)
Microbleed(s) at baseline scan 1003 (19.0) 1055 (19.1)
Lacunar infarct(s) at baseline scan 336 (6.4) 375 (6.8)
Cortical infarct(s) at baseline scan Not applicable 144 (2.6)

Continuous variables are presented as means (standard deviations) and categorical variables as number
(percentages).
Abbreviations: N: number of participants, sec: seconds, FA: fractional anisotropy, MD: mean
diffusivity.
aData on the subcortical structure volumes was the average of the left and right volume. Subcortical
structure volume was missing in 23 participants due to failed FreeSurfer segmentation. Data on global
FA and global MD in the normal-appearing white matter were missing in 295 participants, due to failed
segmentation of the diffusion tensor images.
bWhite matter lesion volume are presented as median (inter-quartile range).

Table 1. Characteristics of the study population.



Figure 2. Trajectories of each MRI marker of interest for men and women. In b l u e
and red, the average trajectory of, respectively, men and women are shown with
corresponding confidence interval. The x-axis represents the age at time of the scan,
the left y-axis represents the absolute marker value, the right y-axis the percentage of
change compared with baseline, where baseline is the average value at age 45 years of
men and women. The log-transformed white matter lesion trajectory was back-
transformed to obtain the white matter lesion volume trajectory. Because the
nontransformed trajectory of white matter lesion volume is shown, only the absolute
marker values on the left axis are presented. In the background of the graphs,
scatterplots of all measurements are shown. Measurements from the same participant
are shown in 3 shades of gray, where the light gray, darker gray, and darkest gray
scatter points are, respectively, the first, second, and third measurement. Below the x-
axis in the graph of total brain volume, the proportion scans from women are shown
for each 10-year age bin.
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Figure 3. Trajectories of change in Z-score for each MRI marker of interest (with corresponding confidence interval)
for (A) men and (B) women. (C) Representation of the age at which Z-score of each MRI marker reached a 2SD
change compared with the value at age 45 years. Trajectories are shown for global FA, global MD, WM, GM
volume, NAWM, natural log transform of white matter lesion volume (log [WML]), TBV, CSF volume, and
hippocampus volume (Hippocampus). The trajectories of MRI markers which increase with age were multiplied
with −1 to orient all lines in the same direction. The trajectory of CSF and total brain volume overlap; therefore, this
trajectory represents both TBV and CSF multiplied with −1. In men the age at which a 2SD change occurred is the
same for white matter and the natural log transform of white matter lesion; therefore, at age 80 years the symbols
for these two markers are overlapping. The same holds for fractional anisotropy and gray matter volume in women.
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For all volumetric markers of the lobes, there was a significant interaction between
age and sex, except for the log-transformed white matter lesion volume in the
frontal, temporal, and occipital lobe, and gray matter volume in the occipital lobe.
Similar to the trajectories of the MRI markers in the whole brain, the lobe-specific
biomarkers in men showed earlier changing markers compared with women. In
addition, the change expressed in Z-score was larger in men compared with women,
except for white matter lesion volume.

The trajectories of the volume and thickness of the cortical parcellations in men and
women are shown in Supplemental Figures 3–6. These figures show a mix of more
linear and nonlinear trajectories, either increasing, decreasing, or stable over age for
the volume and thickness of cortical parcellations. Differences between men and
women are visible in several parcellations; however, the direction of these
differences is mixed, where in some parcellations, there seems to be only an intercept
difference, and in other parcellations, men show an earlier decrease in volume or
thickness and vice versa. Overall, the amount of change in cortical volume was
different across and within lobes, were certain regions in the frontal, temporal, and
parietal lobe decreased ~25% at age 95 years compared with age 45 years, whereas
other regions showed less vulnerability to age.

Sequence of changing volumetric and microstructural MRI
markers

The sequence in which volumetric and microstructural MRI markers reach a 2SD
change after age 45 years is shown in Figure 3C. For both men and women, total
brain volume and global MD were the first 2 markers to change after age 45 years,
although in men, changes started 6 years before women (70 years vs. 76 years).
Other differences between men and women are primarily a later change in women of
normal-appearing white matter volume and normal-appearing white matter volume
(Figure 3C). Global gray matter volume change occurs relatively late in both sexes,
with the largest age difference between men and women (89 in men, 97 in women).
The last marker in the sequence was global fractional anisotropy, occurring at
approximately the same age in both sexes (age 97 years). The sequence of reaching
a 2SD change after age 45 years of total lobe volume is shown in Supplemental
Figure 2A. The first lobe that changes after age 45 years is the frontal lobe, which is
then followed by the temporal lobe. There is a difference in sequence between sexes,
where in men, after the temporal lobe, the parietal lobe changes and finally the
occipital lobe, whereas in women, this is the other way around. Overall, the changes
in total lobe volume of the frontal, temporal, parietal, and occipital lobe occurs,
respectively, 6, 7, 11, and 4 years later in women.
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Focal imaging markers in aging

Figure 4 shows the probability curves in aging for microbleeds, cortical infarcts, and
lacunar infarcts on MRI, for men and women separately. The probability of having
one or more microbleeds ranged from 4.7% (age 45 years) to 54.8% (age 95 years)
and was overall higher than lacunar infarcts (0.9%–23.8%, respectively) and cortical
infarcts (1.0%–15.2%, respectively). Men had higher prevalence of lacunar infarcts
and cortical infarcts than women, respectively, for the ages 64.7 to 83.7 years, and
54.9 to 90.7 years. The interaction between age and sex was not significant in any of
the focal markers.

Sensitivity analyses

We performed a sensitivity analysis in which scans before a dementia or Parkinson's
diagnosis, or scans before a stroke event were excluded (n = 488 scans).
Furthermore, we performed a sensitivity analysis in which only participants with
multiple scans were included. Both sensitivity analyses showed similar results
compared with the original results.
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Figure 4. Probability curves of the presence of the focal markers: one or more microbleeds, cortical
infarct, or lacunar infarct in men and women in aging. The solid and dotted lines represent the
trajectories of, respectively, men and women with corresponding 95% confidence interval. The red,
black, and blue prediction lines represent the probability of presence of respectively one or more
microbleeds, cortical infarct, and lacunar infarct.



Discussion
In this study, we present a comprehensive longitudinal assessment of brain aging,
providing an overview of the concurrency of changing imaging markers. We show
trajectories of volumetric, microstructural, and focal imaging markers in a large
aging population, based on longitudinal MRI data. The trajectories of the different
global, cortical, subcortical, and lobar MRI markers follow a nonlinear curve, with
accelerating change with advancing age. Regarding temporal patterns, the change in
MRI markers generally occurs earlier in men than in women. Among focal lesions,
microbleeds show the highest prevalence and steepest increase across the age range,
up to 54.8% in age 95 years. Overall, men tend to have higher prevalence of focal
lesions (microbleeds, lacunes, and cortical infarcts) compared with women.

A major strength of this study is its longitudinal design, which increases sensitivity
to detect rates of change compared with a more often used cross-sectional design. In
combination with the large sample size from a population-based setting, this
increases the generalizability of our results. Furthermore, because of the availability
of many different MRI markers within this large longitudinal sample, we were able
to simultaneously analyze and compare the aging effect of these markers. However,
some limitations also need to be considered. Owing to a relatively short time
between the first and last scan of participants, and relatively sparse proportion of
older participants, the estimated trajectories may not be representing the longitudinal
effect at the older ages reliably. Furthermore, although scans from participants after
diagnosis of Alzheimer's disease, Parkinson's disease, and stroke were excluded, it
is likely that a proportion of the participants are prodromal, which could influence
the trajectories. However, our sensitivity analysis in which we also excluded scans
before diagnosis showed similar results. Therefore, we believe that the effect of
prodromal participants on these trajectories is minimal. Another limitation of this
study is the possible selection bias, due to differences in people participating in the
scan study and participants that refuse.48 Furthermore, the same could hold for
participants with only a single scan compared with participants with multiple scans.
In 35.0% of the participants, there was only one MRI scan available for analysis. An
important advantage of including persons with both single and multiple brain scans
is that we include all available information and avoid the risk of including relatively
healthier survivors with only longitudinal information. However, in this study,
results remained similar after excluding participants with only a single scan.

The trajectories of whole brain, cortical, subcortical, and lobar volumetric markers
we assessed are largely in accordance with previous literature.16,26,33,49,50 Our study
confirms previous findings that showed that white matter volume changes in aging
are nonlinear, with a more rapid change with advancing age, whereas gray matter
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shows a smaller and more linear decrease with advancing age.30,35,49,51,52 Previous
studies have shown different curves for subcortical structures, for example,
hippocampus volume atrophy accelerates at increasing age, whereas the caudate
nucleus follows a more stable curve with increasing age;16,30 our study also shows a
nonlinear decrease in volume for hippocampus, amygdala, and pallidum in aging
and a more linear volume decrease in putamen volume and a U-shaped curve for the
caudate nucleus volume.

Our study adds to existing literature in showing the longitudinal trajectories of
microstructural white matter changes on top of these macrostructural changes. As
understanding normal aging is essential to better understand or detect abnormal
aging, we examined the sequence with which these imaging markers change with
age and found among volumetric markers total brain volume to change first, which
is likely due to the fact that this reflects a summation of changes in other tissues as
well. This was followed by total white matter, with total gray matter being one of the
last markers to change. An important limitation of our method determining the
sequence is that it depends on the amount of change relative to the variation,
meaning that differences in variation and measurement error directly influences the
sequence. In accordance with literature, lobar trajectories of volumetric imaging
markers and cortical volume and thickness in this study confirm regional differences
in the amount of atrophy within and across lobes.6,50,53 Trajectories of white matter
and total lobe volume show that the frontal lobe is most affected, which has also been
described in other studies.24,35,49,54,55 Furthermore, our study shows that within frontal,
temporal, and parietal lobe, there are certain cortical regions highly affected by
aging, reaching up to ~25% decrease in volume at age 95 years compared with age
45 years. In addition, we determined the sequence with which the lobes change with
age, showing that total frontal lobe volume changes first, followed by the temporal
lobe, parietal lobe, and lastly the occipital lobe. Several hypotheses have been
proposed to explain this selective vulnerability of the brain regions, including the
“retrogenesis hypothesis” which states that late maturing regions are most
vulnerable to aging and the hypothesis of an anterior-to-posterior gradient of age
vulnerability. However, the underlying biological mechanism remains unknown.6,56

Although several studies have looked at sex differences in volumetric imaging
markers in the aging brain, they have not yielded consistent results. Some studies
showed that women have overall a proportionally larger gray matter volume and less
white matter volume than men,57,58 whereas others showed the opposite14,52. A recent
cross-sectional study showed absolute volume differences between men and women
for several markers, but the shape of the trajectories across the life span was equal
between men and women.33 Discrepancies in these findings could most likely be
explained by cross-sectional study design, small sample sizes and limited spread of
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the MRI data over the total age range. In this large longitudinal study, we show sex
differences in the trajectories of all volumetric MRI markers in normal aging, after
correcting for head size differences. We show an earlier acceleration and a larger
amount of change in men compared with women for both whole brain, subcortical,
cortical, and lobar volumes, but also for focal lesions. These differences are also
reflected in a difference in the sequence in which imaging markers change between
men and women, where especially total brain volume, white matter, normal-
appearing white matter, and gray matter volume changes in women appear later in
the sequence than in men. These sex-specific differences are important to take into
account when normative reference values on a lobar level, for example, in a memory
clinic, would be applied in a clinical setting to assess pathology in individual
patients.

Less is known on global microstructural changes in aging, but the microstructural
MRI trajectories we describe are in accordance with published literature, in which
decreased global fractional anisotropy and increased global MD with age have been
suggested to reflect a reduced microstructural integrity.59 Our results suggest global
MD to be a more sensitive marker of reduced microstructural organization in aging,
as it showed an earlier and more accelerated change in comparison with global
fractional anisotropy. In fact, we found that global MD was the second marker to
change (after total brain volume) in the sequence of changing MRI markers, before
change in volumetric white matter markers, indicating that microstructural changes
precede volumetric white matter changes. This is in agreement with a previous study
by our group showing that microstructural changes in white matter appear before
development of white matter lesions.60

Similar to volumetric and microstructural MRI markers, focal markers also show a
nonlinear relationship with age. The probability of having one or more microbleeds
was higher than having ischemic lesions (lacunes and cortical infarcts) at all ages.
Over practically the entire age range, the probability of having one or more lacunar
infarcts (up to 23.8%) was higher than for cortical infarcts (maximum 15.2%). This
corresponds to a previous study from our own group, which showed in a cross-
sectional sample of the same study population that prevalence of microbleeds is
higher than infarcts, and that the prevalence of lacunar infarcts is higher than cortical
infarcts.61 Age trajectories for these focal lesions, especially derived from
longitudinal data, were lacking so far, and the present study provides important
information that may also be useful as a background in a clinical setting. The overall
prevalence of cortical and lacunar infarcts is comparable with the prevalence of
silent infarcts in the different age categories described in a previous cross-sectional
study in Rotterdam Study participants (not included in the present sample).62
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Between the age range 65–85 years, the probability of having one or more lacunar
and cortical infarcts was higher in men. This is in contrast to what previously has
been shown in a study within other subjects from the same community-dwelling
population, where the prevalence of silent infarcts was higher in women than in
men,22 whereas in other studies no significant difference between the prevalence of
infarcts were found between men and women.62 A possible reason for the differences
of our results with other reports is that we made no distinction between silent and
symptomatic infarcts, while it has been shown that the prevalence of symptomatic
infarcts is higher in men.63 Another explanation of our contradictory findings could
be the larger sample size in combination with a longitudinal design, which may be
more sensitive to find gender differences.

In this study, we focused on aggregated measures derived from the images; however,
data-driven methods using the complete scan information, such as machine learning,
could provide new insights in the effect of aging. Another interesting next step is to
assess the effect of different determinants on the aging trajectories.

Overall, the trajectories of imaging markers in brain aging that we describe are
essential background information for studies into age-related neurological diseases,
or for clinical translation, for example, use of reference values. Especially in studies
looking at differences between age-related pathology and normal aging, it is
important to take into account the nonlinear age effects we found for all markers, as
well as the interaction of age and sex for several markers.
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Introduction
Understanding the natural course of cognitive and motor function during brain aging
is pivotal to determine deviations in function that may signal early stages of clinical
neurodegenerative diseases.64,65 Decline in both cognitive and motor function has
been associated with an increased risk of dementia, Parkinson’s disease, and
stroke.64–66 In addition, we recently showed that individuals in whom decline in
motor function precedes decline in cognitive function are at an increased risk of
dementia.66 Numerous studies have quantified the temporal relation of cognitive and
motor function with advancing age67–80, yet little is known about the sequence of
individual cognitive and motor tests in a population free from neurodegenerative
diseases and stroke.

Comparing trajectories of cognitive and motor tests in the general population reveals
whether decline in motor function precedes decline in cognitive function. In
addition, it identifies the specific individual tests that have the earliest signs of
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The objective of this study was to establish trajectories of cognitive and motor
function, and to determine the sequence of change across individual tests in
community-dwelling individuals aged 45–90 years. Between 1997 and 2016,
we repeatedly assessed cognitive function with 5 tests in 9514 participants aged
45–90 years from the population-based Rotterdam Study. Between 1999 and
2016, we measured motor function with 3 tests in 8297 participants. All
participants were free from dementia, stroke, and parkinsonism. We assessed
overall and education-specific cognitive and motor trajectories using linear
mixed models with age as time scale. Next, we determined the sequence of
change across individual tests. The number of assessments per participant
ranged between 1 and 6 (mean interval, years [SD]: 5.1 [1.4]) for cognitive
function, and 1 and 4 (5.4 [1.4]) for motor function. Cognitive and motor
trajectories declined linearly between ages 45 and 65 years, followed by steeper
declines after ages 65–70 years. Lower educated participants had lower
cognitive function at age 45 years (baseline), and declined faster on most
cognitive, but not on motor tests than higher educated participants. Up to a 25-
year age difference between the fastest and slowest declining test scores was
observed.On a population-level, cognitive and motor function decline similarly.
Compared to higher educated individuals, lower educated individuals had
lower cognitive function at baseline, and a faster rate of decline thereafter.
These educational-effects were not seen for motor function. These findings
benefit the understanding of the natural course of cognitive and motor function
during aging, and highlight the role of education in the preservation of
cognitive but not motor function.



decline. Such findings could inform clinicians about which cognitive and motor tests
are most sensitive to detect change in cognitive or motor function. These trajectories
can also be used to signal vulnerable patient groups that deviate from their expected
course based on several key characteristics, such as age, sex, educational level, or
genes. These characteristics significantly influence cognitive function and the rate of
cognitive decline, but their effects on motor function beyond gait speed are less
understood.81,82

Alike changes in brain structure, we hypothesize that change in cognitive and motor
function accelerates with advancing age.83 To model this nonlinear change, we
present trajectories of cognitive and motor function. In addition, we assess the effects
of key determinants of cognitive and motor function, namely age, sex, education,
and apolipoprotein E (APOE) genotype on these trajectories. Finally, we determine
the sequence of change of individual cognitive and motor function tests.

Materials and methods

Study Design

This study was embedded within the Rotterdam Study, a prospective population-
based cohort designed to study the occurrence and determinants of age-related
diseases in the general population.36 In 1989, all inhabitants aged 55 years and older
from Ommoord, a well-defined district in Rotterdam, the Netherlands received an
invitation to participate. This initial cohort comprised 7983 participants. In 2000,
3011 participants who had become 55 years of age or moved into the study district
since the start of the study were additionally included in the cohort. In 2006, a further
extension of the cohort was initiated in which 3932 participants aged 45 years and
older participated. In total, the Rotterdam Study comprises 14 926 participants aged
45 years and older. The overall response rate across all 3 recruitment waves was
72%.

Standard Protocol Approvals, Registrations, and Patient Consents

The Rotterdam Study has been approved by the Medical Ethics Committee of the
Erasmus MC (registration number MEC 02.1015) and by the Dutch Ministry of
Health, Welfare and Sport (Population Screening Act WBO, license number
1071272-159521-PG). All participants provided written informed consent to
participate in the study and to have their information obtained from treating
physicians.
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Study Population

Of a total of 14 926 participants, we excluded those with a history of dementia (n =
907), stroke (n = 846), Parkinson’s disease (n = 300), or parkinsonism (n = 20) at
time of their first cognitive or motor assessment. Next, we excluded participants with
insufficient data to determine whether they had a history of one or multiple of these
diseases (n = 1800). Baseline and follow-up ascertainment methods for dementia,
stroke, Parkinson’s disease, and parkinsonism have previously been described in
detail.84 In addition, 5 participants were excluded because they did not provide
informed consent to access medical records and hospital discharge letters during
follow-up. From the remaining 11 048 participants, 1494 participants were excluded
because they did not have data available on any cognitive or motor test. Finally, we
excluded assessments from participants after they had reached age 90 years in order
to minimize the influence of leverage points on the trajectories of cognitive and
motor function. This resulted in an additional exclusion of 33 participants who did
not have any cognitive or motor function assessment at all before the age of 90 years,
leaving 9521 participants with at least one cognitive or motor assessment. During
follow-up, we excluded assessments of participants after the age of 90 years (n =
1266) and of participants after a dementia, stroke, or Parkinson’s disease diagnosis
(n = 3175). All of the included participants were thus free from neurodegenerative
diseases and stroke at time of their test assessments. In total, 155 347 cognitive
function assessments from 9514 participants and 62 545 motor function assessments
from 8297 participants were available for analyses.

Assessment of Cognitive Function

Between 1997 and 2016, participants underwent cognitive assessments at the
research center using a neuropsychological test battery every 3–5 years.36,73 This
battery included the Word Fluency Test85, Letter-Digit Substitution Test86, and Stroop
Test (Reading, Naming, and Interference subtask)87. In 2002, the 15-Word Learning
Test (Immediate recall, Delayed recall, and Recognition) was added to the test
protocol88. This test protocol was further expanded with the Design Organization
Test in 2006.89 Assessments of these cognitive tests have previously been validated
and have a reasonable to good test–retest reliability.90–93

Word Fluency Test

In the Word Fluency Test, participants were asked to mention as many animals as
possible within 60 seconds, thereby measuring semantic fluency.85 The total number
of correct answers was used as test score, with a maximum score of 30 in our study
protocol.
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Letter-Digit Substitution Test

The Letter-Digit Substitution Test is a modified version of the Symbol Digit
Modalities Test for which participants were asked to write down as many numbers
underneath the corresponding letters as possible in 60 seconds, following a key that
shows correct combinations.86 This test captures both information processing speed
and aspects of executive function. The total number of correct answers was used as
test score with a maximum attainable score of 125.

Stroop Test

The Stroop Test consists of 3 different subtasks, that is, Reading, Naming, and
Interference.87 In the Stroop Reading subtask, participants were asked to read the
printed color names. For the Stroop Naming subtask, participants were asked to
name the printed color blocks. In the Interference subtask, participants were asked
to name the ink color of color names printed in incongruous ink colors (information
processing on an interference subtask). The time taken to complete the subtask was
used as the outcome for each subtask separately and was adjusted for failures, that
is, total time plus for each failure the total time divided by the number of items,
multiplied with 1.5.94 Thus, a higher score indicates a worse performance. The
Stroop Test assesses information processing speed and executive function.

Word Learning Test

The Word Learning Test comprises 3 subtasks: Immediate recall, Delayed recall, and
Recognition.88 For Immediate recall, participants were 3 times visually presented
with a sequence of 15 words and were subsequently asked to recall as many of these
words as possible, measuring verbal learning. Free Delayed recall was tested
approximately 10 minutes after visual presentation, evaluating retrieval from verbal
memory. Recognition was tested by visually presenting the participants a sequence
of 45 words, followed by correctly recognizing the 15 words presented during the
Immediate recall while mixed with 30 other words. Outcome variables were the
mean number of words of 3 trials immediately recalled (as a summary score for
Immediate recall), after the delay of 10 minutes (as a score for free Delayed recall),
and the mean number of correctly recognized words during the recognition trial (as
a score for Recognition), with a maximum score of 15 per subtask.

Design Organization Test

The Design Organization Test consists of square black-and-white grids with visual
patterns, of which participants were asked to reproduce as many designs as possible
in 2 minutes using a numerical code key. It measures visuospatial abilities and is
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based on and highly correlated to WAIS-III block design89, but is less dependent on
motor skills. Test score on the Design Organization Test has a range from 0 to 56
points for each individual, with higher scores indicating better performance.

Assessment of Motor Function

Participants repeatedly underwent motor tests every 3–5 years at the research center
between 1999 and 2016. This motor test battery included 2 tests to assess fine motor
function and a quantitative gait assessment to assess gross motor function. From
1999 onwards, the Purdue Pegboard Test was implemented into the study protocol
to assess manual dexterity. Assessment of fine motor function was further expanded
in 2008 with the implementation of the Spiral Archimedes Test to assess manual
precision. In 2009, a quantitative gait assessment using an electronic walkway at the
research center was implemented in the core study protocol.

Purdue Pegboard Test

For the Purdue Pegboard Test, participants were asked to place as many as possible
cylindrical metal pegs into one of the 25 holes in a pegboard in 30 seconds in 3
separate trials, using their left hand only, right hand only, and both hands
simultaneously, measuring fine motor function.95 The test–retest reliability of
assessments has been established previously. The outcome variable was the sum
score of Purdue Pegboard Test score of these 3 trials, with a maximum of 75 points.

Archimedes Spiral Test

The Archimedes Spiral Test measures fine motor function by requiring participants
to trace a picture of a spiral template that was printed on paper attached to an
electronic drawing board (WACOM Graphire Wireless Pen Tablet, model
CTE-630BT).74 Participants were instructed to trace the spiral as accurately and as
fast as possible using a special pen with their dominant hand, starting in the middle
(Supplementary Figure 1). Automatic quantitative analyses were done using custom-
made software written in MatLab (version 8.1; The Mathworks, Natick, MA), and
processed and visually inspected by 2 trained physicians (S.L. and S.K.L.D.) for
analyses (intraclass correlation coefficient [ICC] for interrater reliability for all test
components >0.95). A smoothly drawn spiral would have a length of drawing about
56 cm (the length of the template) with little deviation from the template, a low
variability in speed, and no crossings (Supplementary Figure 1). The mean
amplitude in deviation from the template to spiral drawing (cm) was used as
outcome, since it is sensitive to capture small differences in fine motor function.74 A
higher deviation indicates worse performance.

Chapter 2.2 | Trajectories of cognitive and motor function

40



Gait Assessment

Gait was evaluated using a 5.79 m long walkway (GAITRite Platinum; CIR systems,
Sparta, NJ: 4.88m active area; 120-Hz sampling rate).36 The reliability and validity
of assessments obtained with this device have previously been established.96 The
standardized gait protocol comprises 3 walking conditions: normal walk, turning,
and tandem walk. In the normal walk, participants walked at their usual pace across
the walkway. In turning, participants walked at their usual pace, turned halfway, and
returned to the starting position. In the tandem walk, participants walked heel-to-toe
on a line across the walkway. Based on the recorded footfalls, the walkway software
calculated 30 parameters, including 25 from the normal walk, 2 from turning, and 3
from the tandem walk. In Supplementary Table 1, we provide descriptions of the 30
gait parameters.

To summarize these 30 gait parameters into several independent domains, we log-
transformed skewed gait parameters to obtain a normal distribution, and
subsequently standardized all continuous gait parameters. Next, we conducted a
principal component analysis with Varimax rotation to derive gait domains, as
previously described.97 This yielded 7 gait domains with an eigenvalue >1, which we
labeled in accordance with the gait parameter that had the highest correlation
coefficient with the corresponding domain: rhythm (step time), variability
(standardized step length), phases (double support), pace (velocity), tandem (sum of
step distance), turning (turning time), and base of support (stride width).97 These gait
domains are illustrated in Supplementary Figure 2. Higher values of the gait domains
except “pace”, represent worse gait performance. Based on these 7 gait domains, the
Purdue Pegboard Test, and the Archimedes Spiral Test, a total of 9 different facets of
motor function were available for analysis.

Assessment of Study Population Characteristics

During home interviews, educational level was assessed and categorized as primary
education (“primary”), lower/intermediate general education or lower vocational
education (“lower”), intermediate vocational education or higher general education
(“intermediate”), and higher vocational education or university (“higher”). Smoking
and alcohol habits were assessed during the same home interviews. Participants were
categorized as current, former, or never smokers. Alcohol habits were classified into
any use or no use of alcohol. At the research center, height and weight were
measured from which the body mass index (BMI; kg/m2) was computed. Blood
pressure was measured twice in sitting position on the right arm using a random-zero
sphygmomanometer, and the average of 2 measurements was used. In addition, non-
fasting blood samples were collected and glucose levels were determined. In the
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initial subcohort, type 2 diabetes was defined as a random or post-load serum
glucose concentration ≥11.1 mmol/L, or the use of drugs to lower blood glucose. In
the first and second extension subcohorts, type 2 diabetes was defined as a fasting
serum glucose concentration ≥7.0 mmol/L, a non-fasting serum glucose
concentration ≥11.1 mmol/L (only if fasting serum was unavailable), or usage of
blood glucose lowering drugs. APOE genotype was determined using polymerase
chain reaction on coded DNA samples in the initial cohort and with a bi-allelic
TaqMan assay in the 2 extensions.98,99 APOE ε4 carrier status was defined as carrier
of one or 2 APOE ε4 alleles.

Statistical Analysis

We assessed trajectories of cognitive and motor function using linear mixed models
with random intercepts and slopes. If models did not converge with both random
intercepts and slopes, only a random intercept was used. Age of the participant at
time of cognitive or motor function assessment was used as underlying time scale.
To capture possible nonlinearity, we included natural cubic splines of age with 1, 2,
or 3 knots, depending on model performance determined by a likelihood ratio test (p
< .05). Knots were defined at the median, tertiles, or quartiles for, respectively, 1, 2,
or 3 knots. We only reported p-values for each of the age intervals, since appropriate
interpretation of effect estimates is hindered by the inclusion of natural cubic splines
in the models. Skewed test outcomes (ie, Stroop Tests, Word Learning Test
Recognition subtask, Archimedes Spiral Test, and gait domains “variability” and
“tandem”) were natural log-transformed to reach an approximate normal
distribution, and were back-transformed for visualization. In addition, we visualized
trajectories of cognitive and motor function by sex, education, or both, using
interaction terms on the additive scale between age and sex, age and educational
level, and age with sex and educational level. Missing data on education level (1.1%)
were imputed by chained equations with 5 iterations. We generated one imputed
dataset based on age at baseline and sex. Furthermore, we assessed trajectories for
APOE ε4 carriers and non-carriers separately by including an interaction term
between age and APOE ε4 status. This analysis was limited to the participants with
known APOE ε4 status (N participants = 8986 for cognitive tests and N
participants = 7835 for motor tests).

Next, we repeated these analyses by standardizing the cognitive and motor test
results to the test performance of the age of 45 years (study baseline) to investigate
the temporal course of change across tests with aging. Skewed test outcomes were
natural log-transformed before standardization. We depicted a threshold of decline
in performance of 0.5 and 1.0 SD compared to the test score at age 45 years. We
subsequently assessed the age at which the test score had reached a decline of 0.5
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and 1.0 SD compared to the test result at age 45 years. Data were analyzed with
SPSS Statistics version 24.0 (IBM Corp., Armonk, NY) and R, CRAN version 3.4.3
“mice” and “nlme” packages.46,100
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Characteristic Analysis of
Cognitive
Function (N =
9514)

Analysis of Motor
Function (N =
8297)

Age at study entry, years, mean (SD) 62.0 (7.9) 60.9 (7.4)
Age at first assessment, years, mean (SD) 64.7 (9.5) 64.6 (10.0)
Sex, women, n (%) 5442 (57.2) 4737 (57.1)
Educational level, n (%)

Primary 1160 (12.2) 886 (10.7)
Lower 3889 (40.9) 3375 (40.7)
Intermediate 2751 (28.9) 2422 (29.2)
Higher 1714 (18.0) 1614 (19.5)

Number of assessmentsa, n (%)
1 2058 (21.6) 2136 (25.7)
2 4362 (45.8) 4192 (50.5)
3 1174 (12.3) 1091 (13.1)
≥4 1920 (20.2) 878 (10.6)

Median number of assessments (range) 2 (1–6) 2 (1–4)
Test assessment interval, years, mean (SD) 5.1 (1.4) 5.4 (1.4)
Body mass index, kg/m2, mean (SD) 27.0 (4.1) 27.1 (4.2)
Smoking, n (%)

Never 2941 (30.9) 2522 (30.4)
Past 4558 (47.9) 4063 (49.0)
Current 1944 (20.4) 1663 (20.0)

Alcohol use, n (%) 7760 (81.6) 6928 (83.5)
Systolic blood pressure, mm Hg, mean (SD) 136 (20.8) 136 (20.6)
Type 2 diabetes, n (%) 865 (9.1) 735 (8.9)
APOE ε4 carrier, n (%) 2539 (26.7) 2217 (26.7)

Notes: APOE = apolipoprotein E; N = number of participants. Characteristics were measured at study
entry except for age at first assessment. Missing values for all characteristics but educational level are
not imputed and therefore numbers do not always sum up to 100%.
aGait was considered as one assessment, because virtually all participants (95%) with an available gait
assessment had complete values for all underlying gait parameters. Therefore, the presented number
of motor assessments is independent from the number of underlying available gait parameters that
were used to compute 7 gait domains.

Table 1. Characteristics of the Study Population.



Results
Characteristics of the study population at time of study entry are presented in Table
1. A total of 9514 participants contributed to the cognitive function assessments. The
mean (SD) age at first cognitive assessment was 64.7 years (9.5 years) and 5442
(57.2%) of the participants were women. Of all participants, 2058 (21.6%) had a
single cognitive assessment, 4362 (45.8%) had 2, 1174 (12.3%) had 3, and 1920
(20.2%) had at least 4 cognitive assessments. The mean interval between tests was
5.1 years (1.4 years). During follow-up up to January 1, 2016, 2977 of 9514
participants (31.3%) died.

A total of 8297 participants contributed to the motor function assessments with a
mean (SD) age at first assessment of 64.6 years (10.0 years), of whom 4737 (57.1%)
were women (Table 1). Out of these participants, 2136 (25.7%) had a single motor
function assessment, 4192 (50.5%) had 2, 1091 (13.1%) had 3, and 878 (10.6%) had
4 motor assessments with a mean (SD) test interval of 5.4 years (1.4 years). Out of
8297 participants, 1903 died (22.9%) during follow-up. The number of participants
per cognitive and motor test is shown in Supplementary Table 2. Supplementary
Table 3 shows the characteristics of the excluded participants. Overall, excluded
participants were older at study entry, attained more often a lower level of education,
and had a higher mean systolic blood pressure than included participants.

Trajectories of Cognitive Function

Performance on the cognitive tests declined with advancing age. Decline on
cognitive tests was generally linear between ages 45 and 65 years, followed by a
steeper, nonlinear decline. Men had higher scores on most cognitive tests and
generally declined less fast than women (p = .003 for Letter-Digit Substitution Test,
p = .02 for Word Learning Test: Immediate recall, p = 0.05 for Word Learning Test:
Delayed recall). These differences between men and women disappeared after
assessing the trajectories per educational level, suggesting that this sex difference
was largely attributable to differences in the level of attained education between men
and women. As such, results from here onwards are presented per educational level
for men and women combined.

For each higher level of attained education, participants showed better performance
on all cognitive tests at age 45 years (Figure 1 and Supplementary Figure 3).
Differences in trajectories of cognitive function between participants with “primary”
educational level and participants with other educational levels became larger with
advancing age, albeit not statistically significant. Furthermore, participants with
“higher” education declined slower than those with “primary” education over time
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on the Interference subtask of the Stroop Test (p = .002, Figure 1) and the Word
Learning Test Recognition subtask (p = .017, Supplementary Figure 3). However,
they declined faster than participants with “primary” education on the Word Fluency
Test (p = .048, Figure 1) and the Word Learning Test Delayed recall subtask (p =
.007, Supplementary Figure 3).

Regarding APOE ε4 carrier status, carriers declined faster on all cognitive tests than
non-carriers (p for interaction between age and APOE ε4 carrier status <.005),
except on the Design Organization Test that showed similar trajectories for carriers
and non-carriers (Supplementary Figure 4).

Trajectories of Motor Function

Trajectories of decline in motor function varied across different motor tests (Figure
2 and Supplementary Figure 3) with the gait domain “phases” and the Purdue
Pegboard Test declining first at the age of 56 and 60 years, respectively. Performance
on the gait domains “rhythm,” “tandem,” and “base of support” remained largely
stable over time. Significant differences between men and women were only found
for trajectories of the domain “tandem” and “phases,” with women performing
increasingly worse over age than men (p = .005 for “tandem” and p < .001 for
“phases”).

In contrast to the effects of education on cognitive function, motor function
trajectories were not associated with educational level (Figure 2 and Supplementary
Figure 3), but those with a “primary” educational level performed better over time
on the Purdue Pegboard Test than participants with other educational levels (p <
.016, Figure 2). In addition, they decreased less fast on the gait domains “rhythm,”
“phases,” and “turning” than participants with higher education levels (p for all tests
<.039, Figure 2 and Supplementary Figure 3).

APOE ε4 carriers performed worse with advancing age than non-carriers on the
Purdue Pegboard Test and on the gait parameters “phases,” and “turning” (p for all
tests <.034, Supplementary Figure 4).
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Figure 1. Trajectories of cognitive function. The thick black continuous line reflects the trajectory of
performance for the total study population based on the results of the linear mixed model; the black
dotted lines represent the 10th and 90th percentile curves. Furthermore, test performance was visualized
per educational level in red. Only cognitive tests most commonly studied in studies of cognitive aging
are presented in this Figure. The remaining cognitive tests are shown in Supplementary Figure 3.
aHigher scores indicate worse performance.
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Figure 2. Trajectories of motor function. The thick black continuous line reflects the trajectory of
performance for the total study population based on the results of the linear mixed model; the black
dotted lines represent the 10th and 90th percentile curves. Furthermore, test performance was visualized
per educational level in blue. Only gait domains most strongly related to are presented in this figure.
The Archimedes Spiral Test and remaining gait domains are shown in Supplementary Figure 3. aHigher
scores indicate worse performance.



Sequence of Change in Cognitive and Motor Function

Before the age of 75 years, most cognitive and motor test scores had reached a
decline of 0.5 SD in standardized test score compared to test scores at age 45 years
(Figure 3). Considering both cognitive and motor tests, the decline of 0.5 SD was
first reached for the Stroop Test Interference subtask at the age of 58 years. This was
followed by the Design Organization Test at the age of 59 years and the Stroop Test
Naming subtask at the age of 64 years. Of all motor tests, the gait domain “phases”
showed the fastest decline, reaching a 0.5 SD decrease in test score at the age of 58
years. Across all tests, the average time between the age of 45 years and the age at
which 0.5 SD decrease in test score was reached, was shorter for cognitive tests than
for motor tests (20.0 vs 24.7 years, respectively, p = .039). By contrast, the time
between 0.5 SD and 1.0 SD decrease in test scores was longer for cognitive
compared to motor tests (11.2 years vs 8.9 years, respectively, p < .001).
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Figure 3. Sequence of decline of cognitive and motor function. Decline was defined as reaching an
average population test score of 0.5 or 1.0 SD below the population mean of the test score at age 45
years. The circle or triangle is displayed at the age at which 0.5 SD (opaque) or 1.0 SD (transparent)
lower score was reached with cognitive tests depicted in red circles and motor tests in blue triangles.
The dotted line represents time between mean population test score at age 45 years and the age at which
0.5 SD decrease in that test score is reached. The continuous line denotes time between the age at which
0.5 SD decrease in the test score was reached and the age at which 1.0 SD in the test score was reached.
The Word Learning Test Recognition subtask and the gait domains “tandem” and “base of support” did
not reach a score of 0.5 SD lower at a certain age than the score at age 45 years and are therefore not
shown. This sequence of decline was estimated based on the total study population. Note that not all
participants had all cognitive and motor tests completed.



Discussion
In this population-based study, we showed that both cognitive and motor function
generally decline linearly between the ages of 45 and 65 years, followed by a steeper
decline after the age of 65–70 years. Test scores for cognitive and motor function
declined similarly, with high variation in the rate of decline across age for individual
tests. Importantly, whereas a higher level of education was associated with higher
cognitive function, there was no association between level of education and function
on the majority of the motor tests.

Various studies have reported changes in cognitive function with aging, but evidence
on the temporal relation between change in cognitive compared to motor function is
limited. Most evidence comes from memory clinics78, or from studies that solely rely
on gait speed to assess motor function.78,82,101–105 These studies have closely linked
global cognitive function to gait speed. As yet, no studies have investigated
differences in performance on specific cognitive tests nor studied other facets of
motor function, such as fine motor skill. These knowledge gaps remain unaddressed
since prior studies found that decline of cognitive and motor function may vary, or
that one may predate the other.79,106–108 Most of these studies were conducted in older
participants (aged 70 years and older), with a limited sample size (varying between
488 and 2276 participants), or with relatively short follow-up (ranging from 5 to 7
years). The current study is able to extend these findings by leveraging a detailed set
of cognitive and motor tests among a broader age range (ages 45–90 years) in a
larger, population-based sample (N ≥ 8297) with up to 6 repeated assessments during
a maximum follow-up of 19.4 years.

We did not find distinct patterns of an overall decline in cognitive function preceding
motor function or vice versa, yet we observed large variability in test-specific
decline. For instance, tendency to shuffle (“phases” gait domain) and fine motor
function generally started to show initial signs of decline up to 25 years earlier than
widely used cognitive (screening) tests, such as the Word Learning Tests Delayed
recall and Recognition.78,101–103,109 These findings may be explained by accelerating
changes in brain structure during aging, with loss of white matter preceding loss of
gray matter.57,83 We indeed observed the earliest changes in cognitive and motor
domains that depend on white matter integrity, including information processing
speed, executive function, and the gait domain “phases”.83,110–112 In contrast,
cognitive and motor domains related to alterations in gray matter volume (ie,
memory and the gait domain “base of support”) showed a later decline in function
than those related to white matter integrity. 83,111–113

Variability in test-specific decline may also be explained by diseases and common
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comorbidities in these older adults, such as cardiovascular diseases, depression,
respiratory diseases, cancer, or impairments in sensory organs.114–117 These may
differentially influence cognitive compared to motor function in some individuals.
As an example, presence of peripheral artery disease or arthrosis limits walking
speed, but does not directly influences executive functioning as assessed by the
Stroop Task.118 The contribution of these potentially modifiable determinants to
sequence of test-specific decline and the shape of these trajectories was beyond the
scope of the present study, and warrants further investigation using more advanced
statistical models.

As expected, we found that participants with a higher educational level had higher
baseline scores (scores at age 45 years) for cognitive tests than participants with a
lower educational level. Regarding the rate of change in cognitive function, we
found that participants with a “primary” educational level declined faster on most
tests than higher educated participants. The declines over time were largely similar
among “lower,” “intermediate,” and “higher” educated participants. This implies
that higher educated individuals are generally older when they reach the same
cognitive test performance than lower educated individuals. As an example,
comparing performance between lower and higher educated participants on the
Word Learning Test Delayed subtask score, reveals that at age 45 years, the lowest
educated individuals remembered on average 8 of the 15 originally presented words
after 10 minutes. The highest educated individuals, however, attained this same
score when they were on average 73 years. Yet, no association was found between
educational level and motor function for the majority of the motor tests. These
findings support emerging evidence that cognitive reserve, operationalized by for
example educational attainment, could have long-lasting compensatory effects on
cognitive but not on motor function, with the potential to postpone cognitive decline
and thereby the clinical diagnosis of dementia.119–121

Limitations and Strengths

This study has several limitations. First, given that participants underwent most
cognitive tests at the research center, we cannot exclude that selection bias may have
influenced our results, with those who are considered less healthy being less likely
to participate. Therefore, the presented test scores on cognitive and motor function
may be an overestimation of the true performance in the general population,
especially for those at older ages.122 Second, repetitive administering of cognitive
tests can lead to learning effects, which could have led to overestimating
performance with increasing age. However, these effects are expected to be limited,
since the median test interval was 5.1 years for cognitive assessments and 5.4 years
for motor assessments. Third, in the early nineties, the completed level of education
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was determined by several factors including sex and social economic status. As such,
educational attainment in this study may not be a proper proxy for cognitive reserve
in women. Lastly, we estimated trajectories of cognitive and motor function on a
population level, yet deviations from this pattern on an individual level may signal
an under recognized group at high risk for neurodegenerative diseases and stroke.
Strengths of this study include the large sample size and the repeated and
simultaneous assessments of cognitive and motor function in a single, community-
dwelling population.

Conclusions

In this study, we present trajectories of decline of both cognitive and motor
functioning among individuals aged 45–90 years in the general population. Such
data are essential to understand the natural course of cognitive and motor function
during aging. Cognitive and motor function decline similarly during aging,
characterized by a linear decline between the ages of 45 and 65, and a steeper decline
thereafter. Higher educational attainment was related to higher cognitive function at
baseline and to a slower rate of subsequent decline, but it did not affect motor
function. In the sequence of decline across individual tests, up to a 25-year age
difference between the fastest and slowest declining test scores was observed.
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Introduction
Gyrification is one of the most fundamental and distinguishing properties of the
human cerebral cortex. The folding patterns of the cortex are highly heritable123,
evolutionarily conserved, and similar amongst closely related animal species124.
Abnormalities in gyrification, such as polymicrogyria and pachygyria, lead to altered
brain function, which can manifest as impairments in speech and cognition.
Similarly, both global and regional abnormalities in gyrification have been found in
patients with autism125,126, schizophrenia127,128, and bipolar disorder128. A deeper
understanding of gyrification may therefore lead to better insight into a broad range
of diseases.

Gyrification changes with age and in turn affects cognitive function.128–131 The global
degree of gyrification is often expressed as the Gyrification Index (GI). The GI peaks
during childhood, rapidly declines during adolescence and the decline slows down
as adulthood progresses128–130. Regional patterns of gyrification can be quantified
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Gyrification of the cerebral cortex changes with aging and relates to
development of cognitive function during early life and midlife. Little is known
about how gyrification relates to age and cognitive function later in life. We
investigated this in 4397 individuals (mean age: 63.5 years, range: 45.7 to 97.9)
from the Rotterdam Study, a population-based cohort. Global and local
gyrification were assessed from T1-weighted images. A measure for global
cognition, the g-factor, was calculated from five cognitive tests. Older age was
associated with lower gyrification (mean difference per year = −0.0021; 95%
confidence interval = −0.0025; −0.0017). Non-linear terms did not improve the
models. Age related to lower gyrification in the parietal, frontal, temporal and
occipital regions, and higher gyrification in the medial prefrontal cortex. Higher
levels of the g-factor were associated with higher global gyrification (mean
difference per g-factor unit = 0.0044; 95% confidence interval = 0.0015;
0.0073). Age and the g-factor did not interact in relation to gyrification (p >
0.05). The g-factor bilaterally associated with gyrification in three distinct
clusters. The first cluster encompassed the superior temporal gyrus, the insular
cortex and the postcentral gyrus, the second cluster the lingual gyrus and the
precuneus, and the third cluster the orbitofrontal cortex. These clusters largely
remained statistically significant after correction for cortical surface area.
Overall, the results support the notion that gyrification varies with aging and
cognition during and after midlife, and suggest that gyrification is a potential
marker for age-related brain and cognitive decline beyond midlife.



with the Local Gyrification Index (LGI).132 The regions surrounding the angular
gyrus, i.e. the parietal cortex, seem most prone to age-related decline in the LGI.131

The association between the LGI and cognition has been studied in both pediatric
and adult cohorts, and it showed the strongest effect in the frontal and parietal
regions as well as the temporoparietal junction.130 These findings consolidate the
relevance of gyrification in the normal development of the brain.

Several knowledge gaps still remain. Limited work exists on cortical gyrification
during middle adulthood, i.e. 40–65 years of age, and late adulthood, i.e. beyond 65
years of age. Other aspects of the cerebral cortex – such as cortical surface area –
change significantly during middle and late adulthood.83 Furthermore, atrophy of the
cerebral cortex seems to accelerates towards the end of life133, and the rates of
atrophy differ between brain regions83. How gyrification changes during late life and
how the changes are distributed across the brain remains to be elucidated. Similarly,
cognitive function declines in aging, which in turn may affect if and how cognition
and gyrification relate. Finally, most previous studies were performed in clinical
samples or clinic-based settings, limiting the external validity of the findings. The
use of population-based studies would allow for better generalization of the results.

The aim of the present study was to elucidate the associations of age and cognition
with gyrification during middle and late adulthood. The study was performed using
data from the Rotterdam Study cohort, a prospective population-based cohort study
of individuals aged 40 years and higher. We hypothesized that age and the GI
showed a non-linear association across middle and late adulthood, where the rate of
loss of gyrification accelerates with age. Furthermore, based on previous volumetric
work, we expected to find that the shape of the association between age and the LGI
differed across the brain, with regions near the angular gyrus showing the fastest
decline towards the end of life. Finally, we hypothesized that cognition positively
associated with the GI, and with the LGI in frontal and temporal regions.

Methods

Study population

The Rotterdam Study is a prospective cohort study based in the Ommoord district of
Rotterdam, the Netherlands, that has been ongoing since 1989.36 The second
recruitment wave started in 2000, and the third wave in 2006. All participants are re-
invited for an interview and in-person examinations every 4–6 years. The study has
included 14,926 participants 45 years of age and older. Neuroimaging was
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introduced in 2005.37 The current study population included individuals who were
eligible to participate in a research center visit between 2006 and 2015 with
cognitive testing and neuroimaging (n = 6647). Of these, 38 had no cognitive test
battery data, 980 had incomplete data, 417 did not participate in the MRI study, in
462 the image surface tesselation in FreeSurfer failed, and 145 were excluded due to
poor quality of the T1-weighted images. We further excluded participants with
prevalent stroke (n = 126) or prevalent dementia (n = 82). The final sample consisted
of 4397 participants. A flow chart of the study population is shown in Supplementary
Figure 1. The Rotterdam Study has been approved by the Medical Ethics Committee
of the Erasmus MC (registration number MEC 02.1015). All participants provided
written informed consent.

Assessment of cognitive function

All participants underwent a cognitive test battery.73 The battery consisted of five
tests, each assessing different cognitive domains. The first test was the 15-word
learning test (15WLT), to assess verbal learning and verbal memory.134 The 15WLT
consisted of three trials where 15 words were presented visually, and after each trial
participants had to name all words they could remember (i.e. immediate recall). At
least 10 min after the third trial, participants were again asked to name all words that
they could still remember (i.e. delayed recall). We used the number of words in the
delayed condition as the measurement outcome. The second test was the Stroop
task135, a task that assesses selective attention and automaticity. Participants had to
read aloud the names of colors (red, green, blue, yellow) as fast and flawless as
possible. The words were printed on paper in mismatching colors (e.g. “blue”
printed in the color red) to interfere with the naming process. The time to read all
words was adjusted for the number of errors by calculating the time per word and
adding one-and-a-half that time for each error. Thus, the Stroop task is inversely
coded compared to the other tests, where a higher score relates worse performance.
The total was then log transformed and used as the outcome measure. The third test
was the letter-digit substitution test (LDST)90, in which participants have to write
down the corresponding digits next to letters according to a dictionary table. This
assesses processing speed as well as executive function. Fourth, a word fluency test
(WFT) was administered to assess efficiency of searching long term memory85.
Participants had to name as many animal species in a span of 1 min, with the total
number of unique species as the outcome. Finally, we administered the Purdue
pegboard test (PPB)136, where participants had to place small metal pins into holes
across three trials: left hand only, right hand only, and both hands. The sum of the
number of pins over all trials was used as a measure for fine motor dexterity and
psychomotor ability.
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To summarize all tests into a single score for global cognition, known as the g-factor,
we used principal component analysis and isolated the first component.137 The g-
factor explained 50.6% of the variance amongst the cognitive tests which is in
agreement with previous literature.138

Image acquisition

Neuroimaging was performed on a 1.5T magnetic resonance imaging (MRI) scanner
with an eight-channel head coil (GE Signa Excite, General Electric Healthcare,
Milwaukee, USA). The imaging sequences have been described extensively
elsewhere37. Axial T1-weighted images were collected using a 3D Spoiled Gradient
Recalled sequence (TR = 13.8 ms, TE = 2.8 ms, TI = 400 ms, flip angle = 20°,
bandwidth = 12.5 kHz, voxel size = 0.8 mm isotropic). The images were
subsequently stored in an extensible neuroimaging archive toolkit (XNAT)
database.139

Image processing

Images were processed using the FreeSurfer analysis suite (version 6.0).140 The
standard reconstruction was conducted, where non-brain tissue was removed, voxel
intensities were corrected for B1 field inhomogeneities, voxels were segmented into
white matter, gray matter and cerebrospinal fluid, and surface-based models of gray
and white matter were generated. The GI was calculated as the ratio between the
outer contour of the cortex and the pial surface of the whole cerebrum. The LGI was
estimated at each vertex along the cortical ribbon132,141, and each vertex was
automatically assigned an anatomical label according to a predefined atlas142. All
measures were co-registered to a standard stereotaxis space and smoothed with a
full-width half-max Gaussian kernel, 5 mm for the LGI given inherent smoothness
and 10 mm for all other measures.

A multistep procedure was used to identify datasets of insufficient quality for
analysis. First, we used an automated tool to obtain a quality metric for each T1-
weighted scan that assesses artifacts related to motion143. Next, we visually inspected
FreeSurfer reconstructions from 200 randomly selected scans. The visual ratings
consisted of inspecting segmented brain images in the coronal, sagittal and axial
directions, as well as 3D reconstructions of the pial surface. The segmentation was
rated as a fail if FreeSurfer did not succeed to consistently trace the white and pial
surfaces. Next, we established that the automated quality metric value predicted
strongly whether a test passed or failed. We subsequently set a threshold above
which all scans were of sufficient quality, and all scans below the threshold were
excluded.
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Measurement of covariates

Hypertension was defined as a resting blood pressure exceeding 140/90 mmHg or
the use of blood pressure lowering medication. Blood pressure was measured twice
with a sphygmomanometer after 5 min of rest, and the average of the two
measurements was used. Use of blood pressure lowering medication was derived
from information collected by a physician at the research center. Alcohol use was
assessed during home interviews with questions based on beer, wine, liquor and
other alcoholic beverages such as sherry and port. Based on these data, an
established method was used to calculate alcohol in grams per day.144 BMI was
calculating using the height and weight obtained during the research center visit.
Smoking status was obtained during home interviews and individuals were classified
as never smokers, past smokers or current smokers. Education level was assessed
during the home visit interview and classified into four categories according to the
United Nations Educational, Scientific and Cultural Organization classification:
primary (no or primary education), low (unfinished secondary and lower vocational),
intermediate (secondary or intermediate vocational) or high education (higher
vocational or university).

Statistical analyses

All statistical analyses were performed in R 3.4.3.145 To assess the relation of age and
cognition with the GI we used linear regression models. Surface-based LGI analyses
were performed to study the spatial distributions of these associations along the
cortex. This was done with vertex-wise analyses using the R package QDECR
(https://github.com/slamballais/QDECR). Resulting p-value maps were corrected
for multiple comparisons at the vertex level using Gaussian Monte Carlo
Simulations146. Surface-based analyses on cortical thickness and similar measures
may show non-Gaussian patterns of spatial correlations, which would increase the
false positive rate higher than 0.0531. We therefore set the cluster forming threshold
to p = 0.001, as this has shown high correspondence with actual permutation testing
across all surface measures.147 We further applied Bonferroni correction to account
for analyzing both hemispheres separately (i.e. p < 0.025 cluster-wise).

Age-related atrophy of the brain accelerates with age, which may also affect cortical
gyrification. We therefore studied three types of associations between age and
cortical gyrification: (1) a linear age term, (2) orthogonal linear and quadratic age
terms, (3) a B-spline for age with two or three degrees of freedom. The spline knot
for the two-fold spline was set at the median age, and the knots of the three-fold
spline at the first and second tertiles. The shape of the relationship between age and
gyrification was assessed in two steps by evaluating model fit. The linear and non-

Chapter 2.3 | Cortical gyrification in relation to age and cognition

58



linear model fits for the GI were compared by calculating the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC) for each model. Next,
we created a linear model for age and the LGI, and additionally a non-linear model
depending on the AIC and BIC for the GI models.

Specific domains of cognition map to different functional regions of the cerebral
cortex.148 Therefore, in addition to the g-factor we also studied whether the scores
from the individual cognitive tests associated with GI and LGI. Furthermore, to
inspect whether the association between cognition and gyrification changes with age
we created a separate model with an interaction term for age and the g-factor.

Models were adjusted for covariates to account for potential confounding. The age
analyses were corrected for sex and for study cohort, i.e. the first, second or third
cohort of the Rotterdam Study. The cognition analyses were adjusted in three
separate models, which allows for the impact of each set of new confounders on
model estimates to be described. Model 1 was adjusted for sex, cohort, age at
cognitive testing and age difference between cognitive testing and the MRI scan. The
way that age entered the model as a covariate – linear, quadratic or with splines –
was dependent on the results from the analyses on age and the GI. Model 2 was
additionally adjusted for hypertension, alcohol intake, smoking status and BMI.
Lastly, Model 3 was additionally adjusted for education level. The p-values for the
associations between the potential confounders and the global gyrification index are
shown in Supplementary Table 1. To assess whether image quality could affect the
results we ran sensitivity analyses with the image quality metric for each scan as a
covariate.

Gyrification is calculated as the ratio of the pial surface and the outer surface of the
brain.141 However, the cortical surface area itself has also been shown to relate to
cognitive function.149 Any association between the LGI and cognition may therefore
be driven by cortical surface area, and potentially by cortical thickness as well. To
further assess this, we performed a sensitivity analysis per cluster. In each model we
defined cognition as the outcome, and both the mean LGI and the mean cortical
surface area or the mean cortical thickness of each cluster as the determinants. The
models were further corrected for all covariates as used in Model 3. We then assessed
whether the association between cognition and LGI remained statistically
significant, taking into account cortical surface area or thickness.

All covariates had less than 1% missing data except for alcohol use (4.8%). In order
to maximize power, missing covariate data were imputed thirty times using multiple
imputation by chained equations.100 Imputed models were subsequently pooled per
vertex according to Rubin’s rules.150 We also performed a non-response analysis to
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examine whether the individuals who were not included into the final sample were
in any way different than those who were included (Table 1). This was done through
logistic regression, where inclusion was entered as the outcome and all other
variables were included as predictors.

Of note, in all models, we defined age or cognition as the determinants (predictors)
and gyrification as the outcome, as limitations in vertex-wise analyses generally only
allow for the vertex measure to be modelled as the outcome. Thus, while cognition
is generally considered a consequence of brain structure, due to limitations in the
vertex-wise software it was defined as a determinant of gyrification in the models.
As a sensitivity analysis, we created models for each statistically significant LGI
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Characteristics Included
sample
N = 4397

Excluded
sample
N = 2250

p-valueb

Age at MRI (years) 63.5 ± 10.1 69.5 ± 1.13 <.001
G-factor 0.00 ± 1.00
Cohort (%) <.001
RS-I 15.3 33.9
RS-II 25.3 26.7
RS-III 59.4 39.5

Sex, female (%) 55.3 57.8 .278
Time between cognition and MRI
(years)

0.3 ± 0.4 0.2 ± 0.3 .847

Hypertensive (%)a 61.4 76.1 .053
Alcohol per day (grams)a 9.2 ± 10.1 8.5 ± 9.6 <.001
Body mass index (kg/m2)a 27.4 ± 4.1 28.1 ± 4.8 .003
Smoking status (%)a .406
Never 30.9 29.9
Past 49.1 49.4
Current 20.0 20.7

Education level (%)a .002
Primary 7.8 13.1
Low 37.7 41.0
Intermediate 30.3 28.4
High 24.2 17.5

Mean GI 2.55 ± 0.08 2.52 ± 0.09 <.001
aMissingness of data for all variables was below 1% except for alcohol consumption (4.8%).
bDifferences between inclusion and exclusion were tested through multiple logistic regression.

Table 1. Baseline characteristics of the study population.The excluded sample (n =
2250) were all participants that were eligible for cognitive testing and the
neuroimaging study, but did not end up in the final sample (see Supplementary
Figure 1).



cluster where the cluster-wise mean LGI was defined as the determinant and the g-
factor as the outcome.

All reported results focus on the beta coefficients and the 95% confidence intervals
(CIs) rather than p-values. Confidence intervals give insight into the range of values
within which the true parameter will likely be, whereas p-values do not151. Any
reported result that is stated as statistically significant will have a p-value below the
threshold of 0.05.

Results
Baseline characteristics of the study population (n = 4397) are displayed in Table 1.
The mean age of the participants was 63.5 years (SD: 10.1, range: 45.7 to 97.9) and
55.3% were female. We analyzed whether any differences were present between
individuals included in the analysis and those who were eligible for MRI but did not
end up in the final sample (Supplementary Figure 1). Excluded participants tended
to be older (mean = 6.2 years), were more often from the first cohort of the
Rotterdam Study (33.9% versus 15.3%), were less likely to drink alcohol (mean =
−0.7 g per day), had a higher BMI (mean = 0.7 kg/m2), were more likely to have
only primary education (13.1% versus 7.8%) and had a lower GI (mean = −0.03).

Age and global gyrification

A scatterplot of age and the GI is shown in Figure 1A, and the results of the different
models are shown in Table 2. In the linear model one year increase in age associated
with a −0.0021 (95% CI: -0.0025; −0.0017) lower GI. For the 2nd polynomial model
both the linear term (p < 0.001) and the quadratic term (p = 0.027) were also
statistically significant. All spline coefficients were statistically significant for the
natural cubic splines with both two and three degrees of freedom. The AIC and BIC
of all models were highly similar, suggesting that the linear fit sufficiently describes
the association of age during mid and late adulthood with the GI.

Cognition and global gyrification

A scatterplot of the g-factor and the GI is shown in Figure 1B, and regression
coefficients for the g-factor and all separate cognitive tests are shown in Table 3 for
all three adjustment models. Higher levels of the g-factor were associated with a
higher GI, with similar results across Model 1 (β = 0.0045, 95% CI = 0.0018;
0.0073) to Model 3 (β = 0.0044, 95% CI = 0.0015; 0.0073). We examined the
individual cognitive tests to see which cognitive tests drove most of the association.
Three cognitive tests yielded statistically significant results, namely the LDST
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(β = 0.0005, 95% CI = 0.0001; 0.0009), the WFT (β = 0.0009, 95% CI = 0.0005;
0.0013) and the Stroop task (β = −0.0081, 95% CI = −0.0164; −0.0002). Of these,
the Stroop task had the strongest association with gyrification. Of note is that the
association with the Stroop task was negative due to the lower scores on the Stroop
task reflecting higher cognitive performance. Finally, the interaction term between
age and cognition did not reach statistical significance in any of the models (all
punadjusted > 0.05), thus the magnitude of the association between cognition and the GI
was stable during and after midlife.
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Figure 1. Scatterplot of age (A) and cognition (B) with GI. For age, four models were plotted (linear,
quadratic, and the two and three spline models). The lines are not fully visible due to the extensive
overlap. The plot for cognition only shows the linear model.
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Modela Type β 95% CI AIC BIC
Linear Linear −0.0021 −0.0025;

−0.0017
−10252.60 −10214.27

Quadratic 1st polynomial −0.0053 −0.0081;
−0.0024

−10255.47 −10210.75

2nd polynomial −0.000025 −0.000003;
−0.000046

Spline (2) 1st spline −0.1235 −0.2376;
−0.1020

−10256.33 −10211.61

2nd spline −0.0703 −0.0947;
−0.0458

Spline (3) 1st spline −0.0552 −0.0384;
−0.0718

−10203.46 −10254.57

2nd spline −0.1179 −0.0915;
−0.1442

3rd spline −0.0826 −0.0550;
−0.1102

aThe models were adjusted for study cohort and sex.
Abbreviations: GI: Gyrification Index; CI: Confidence interval; AIC: Akaike information criterion;
BIC: Bayesian information criterion

Table 2. The associations between age and GI.

Domain GI (Model 1a) GI (Model 2b) GI (Model 3c)
β 95% CI β 95% CI β 95% CI

g-factor 0.0045 0.0018;
0.0073

0.0047 0.0019;
0.0075

0.0044 0.0015;
0.0073

15WLT −0.0001 −0.0009;
0.0007

−0.0001 −0.0010;
0.0007

−0.0003 −0.0011;
0.0006

Stroop
taskd

−0.0090 −0.0171;
−0.0010

−0.0090 −0.0172;
−0.0010

−0.0081 −0.0164;
−0.0002

LDST 0.0005 0.0001;
0.0009

0.0005 0.0002;
0.0009

0.0005 0.0001;
0.0009

WFT 0.0009 0.0005;
0.0013

0.0009 0.0005;
0.0013

0.0009 0.0005;
0.0013

PPB 0.0001 −0.0004;
0.0007

0.0002 −0.0004;
0.0007

0.0002 −0.0004;
0.0007

aAdjusted for age at MRI scan (years), study cohort, sex and age difference between cognitive testing
and MRI scan (years).
bAdditionally adjusted for hypertension (yes/no), alcohol intake (grams per day), BMI and smoking
status (never/past/current).
cAdditionally adjusted for education level (primary/low/intermediate/high).
dThe Stroop task is inversely coded compared to the other tests, where a higher score relates to worse
performance.
Abbreviations: GI: Gyrification Index; CI: Confidence interval; WLT: 15 Word learning test; WFT:
Word fluency test; PPB: Purdue pegboard test.

Table 3. The associations between cognition and GI.



Age and local gyrification

In order to determine the precise spatial extent of associations between age and
gyrification, we performed surface-based vertex-wise analyses. Due to the similar
fits between the models of age and the GI we opted to further investigate the linear
model and the two-fold spline model with the LGI. Figure 2 displays the vertex-wise
associations between age and the LGI. In the linear model the LGI decreased with
age in the parietal, temporal, occipital and frontal regions. The effect sizes were
generally larger than those found when examining the association between age and
the GI. A second cluster arose in the frontal pole and medial prefrontal cortex, where
the LGI increased with age. The significant clusters were similar across hemispheres
in both size and strength. The two-degree spline model differed from the linear
model. The first spline fold, i.e. ages between 45.7 and 61.6 years, associated
negatively with the LGI in the parietal, frontal, temporal and occipital regions.
Unlike the linear model, no cluster was present near the frontal pole or the medial
prefrontal pole. In the second spline fold, i.e. ages between 61.6 and 97.9 years, the
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Figure 2.Vertex-wise associations between age – the linear model and the two-fold spline model – and
the local gyrification index (LGI). The color scale represents the regression coefficients. The models
were adjusted for study cohort and sex. L = Lateral; M = Medial; S = Superior; I = Inferior.



negative associations were more restricted to the temporal and parietal regions, and
the lateral part of the frontal cortex. In addition, a positive cluster was present in the
medial prefrontal cortex and the frontal pole, stronger than in the linear model. The
age-gyrification association shows a clear deviation in its shape in the medial
prefrontal gyrus compared to other regions (Supplementary Figure 2). The findings
were robust upon further correction for the image quality metric (Supplementary
Figure 3).

Cognition and local gyrification

Figure 3 displays the vertex-wise associations of the g-factor with the LGI for the
three adjustment models. Associations between g-factor and the LGI were mostly
present in three clusters: (1) the superior temporal gyrus, the insular cortex and the
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Figure 3. Vertex-wise associations between the g-factor and the LGI. The color scale represents the
regression coefficients. Model 1 was adjusted for age (linear term), study cohort, sex and the time
difference between the cognitive test battery and the MRI visit. Model 2 was additionally adjusted for
hypertension status, alcohol intake, BMI and smoking. Model 3 was additionally adjusted for education
level. L = Lateral; M = Medial; S = Superior; I = Inferior.



postcentral gyrus, (2) the lingual gyrus, the precuneus and the pericalcarine cortex
and (3) the orbitofrontal gyrus. These clusters roughly presented bilaterally. Similar
patterns were found for the associations between the individual cognitive tests and
the LGI (Figure 4). The LGI of the cuneate gyrus, insular cortex and superior
temporal gyrus were all associated with the Stroop task, the LDST and the WFT,
although more so on the right than the left hemisphere. Additionally, the WFT also
associated with the LGI in several additional regions, namely the supramarginal
gyrus on both hemispheres and the lateral orbitofrontal cortex, the angular gyrus and
the superior parietal gyrus on the right hemisphere. Further correction for the image
quality metric did not affect these findings (Supplementary Figure 4). Finally, as
cognition was originally specified as the determinant, we constructed cluster-wise
models with the cluster-wise mean gyrification as the determinant and cognition as
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Figure 4. Associations between the individual cognitive tests and the LGI. The color scale
represents the regression coefficients. The images show the results for Adjustment Model 3. The Stroop
task is inversely coded compared to the other tests, where a higher score relates worse performance. No
statistically significant clusters were identified for the 15 word learning test or the Purdue pegboard test,
thus these are not displayed. LDST = Letter digit substitution test; WFT = Word fluency test. L =
Lateral; M = Medial; S = Superior; I = Inferior.



the outcome. For the identified LGI clusters the associations with cognition
remained unattenuated (all clusters p < 0.00001).
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Hemisphere # Location Standardized mean LGI standardized mean surface
area

β 95% CI p β 95% CI p
Left 1 Temporal 0.025 [-0.006;

0.055]
.115 0.056 [0.024;

0.088]
.001

Left 2 Cuneus 0.047 [0.016;
0.077]

.002 0.025 [-0.005;
0.056]

.106

Left 3 Orbitofrontal 0.025 [-0.001;
0.050]

.056 0.067 [0.038;
0.096]

<.001

Right 1 Temporal 0.045 [0.014;
0.076]

.004 0.041 [0.009;
0.073]

.012

Right 2 Cuneus 0.028 [-0.005;
0.073]

.094 0.029 [-0.004;
0.063]

.085

Right 3 Orbitofrontal 0.030 [0.005;
0.054]

.019 0.061 [0.034;
0.089]

<.001

Table 4. The associations of the mean LGI and mean surface area with g-factor per previously identified
LGI cluster. Each model contained both LGI and surface area. Both the GI and surface area were
standardized in order to be able to compare the magnitude of their effects. All models were adjusted for
age at MRI scan (years), study cohort, sex, age difference between cognitive testing and MRI scan
(years), hypertension (yes/no), alcohol intake (grams per day), BMI (kg/m2), smoking status (never/
past/current), and education level (primary/low/intermediate/high).

Hemisphere # Location Standardized mean LGI standardized mean thickness
β 95% CI p β 95% CI p

Left 1 Temporal 0.063 [0.038;
0.088]

<.001 0.062 [0.039;
0.085]

<.001

Left 2 Cuneus 0.069 [0.045;
0.094]

<.001 0.045 [0.022;
0.068]

<.001

Left 3 Orbitofrontal 0.044 [0.020;
0.068]

<.001 −0.025 [-0.049;
−0.000]

.047

Right 1 Temporal 0.075 [0.050;
0.100]

<.001 0.061 [0.037;
0.085]

<.001

Right 2 Cuneus 0.058 [0.034;
0.083]

<.001 0.050 [0.027;
0.073]

<.001

Right 3 Orbitofrontal 0.049 [0.026;
0.073]

<.001 −0.003 [-0.027;
0.021]

.790

Table 5. The associations of the mean LGI and mean cortical thickness with g-factor per previously
identified LGI cluster. Each model contained both LGI and cortical thickness. Both the LGI and cortical
thickness were standardized in order to be able to compare the magnitude of their effects. All models
were adjusted for age at MRI scan (years), study cohort, sex, age difference between cognitive testing
and MRI scan (years), hypertension (yes/no), alcohol intake (grams per day), BMI (kg/m2), smoking
status (never/past/current), and education level (primary/low/intermediate/high).



Both vertex-wise cortical surface area and thickness associate with age
(Supplementary Figure 5) and the g-factor (Supplementary Figure 6). In order to
assess whether the associations between cognition and the LGI were driven by
cortical surface area or thickness, we created a new model for each significant LGI
cluster with the g-factor as the outcome and both the mean LGI and the mean cortical
thickness or surface area as determinants. Associations remaining after concurrent
adjustment for cortical surface area or thickness suggest an independence between
LGI the other measures. The results are shown in Table 4 for surface area and in
Table 5 for cortical thickness. After adjustment for surface area, the LGI remained
associated with the g-factor in the left hemisphere in the cluster near the cuneus
(punadjusted = .002) but not the clusters in the orbitofrontal cortex (punadjusted = .056) or
the temporal cortex (punadjusted = .115). In the right hemisphere the association between
the LGI and cognition was unaffected by surface area in both the orbitofrontal
(punadjusted = .019) and the temporal clusters (punadjusted = .004), but not in the cluster in
the cuneus (punadjusted = .094). In all clusters, the LGI was unaffected by additional
corrections for cortical thickness.

Discussion
We show in a large population-based setting that global gyrification of the cerebral
cortex decreases during middle and late adulthood. This decline in gyrification is
mainly driven by regions close to the Sylvian fissure. A specific cluster within the
medial prefrontal cortex showed more gyrification with increasing age, particularly
during late adulthood. Furthermore, we also found that global cognition positively
associates with gyrification, in particular in the temporal regions, the lingual gyrus
and the cuneus.

The findings for age and gyrification are in line with previously reported findings in
smaller or younger age samples. A study from 2017 attempted to map the life course
trajectory of the GI in a cross-sectional sample of 881 participants.128 The authors
found that the GI trajectory can be described as a negative logarithmic function, with
the decline in gyrification slowing with age. However, their sample included only
about 30 participants above the age of 60. Another study reported on the association
of age and gyrification in 322 healthy adults of whom 116 were aged 60 or older.131

They found that the LGI had non-linear associations with age in certain brain
regions, especially the orbitofrontal and dorsomedial prefrontal cortex. In particular,
LGI in these regions seemed to increase towards the end of life. Our study builds
upon these findings, with a much larger number of participants beyond the age of 70
years, allowing us to more precisely study how gyrification changes during late
adulthood. We found that the association is essentially linear, which matches a
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negative logarithmic life course pattern.128 We also established non-linear patterns in
the regional surface-based patterns, albeit the increase in LGI was only seen in the
medial prefrontal cortex and only towards the end of life. These findings further
consolidate the global and local dependence of gyrification on age.

Gyrification associates with cognition during and after midlife, and this association
does not change with age. Furthermore, in half of the significant clusters we found
that cortical surface area is likely driving the associations. This is not surprising as
loss of surface area leads to lower folding thus lower gyrification within that region.
Still, three out of six LGI clusters remained associated with cognition after adjusting
for surface area, suggesting that gyrification harbors independent information.
Furthermore, the pattern of LGI clusters within our study was similar amongst the
individual cognitive tests, suggesting that the LGI captures a more general aspect of
cognitive function. Gyrification may therefore play a unique role in cognitive
function, which could prove useful in the study of normal and abnormal cognitive
aging. For example, other cortical characteristics such as thickness and surface area
have distinct contributions to cognitive decline as seen in Alzheimer’s disease152–154,
yet any such contributions from gyrification remain to be elucidated.

The temporal lobe has previously been linked to cognitive processes such as
language155 and memory156 as well as psychiatric disorders like adulthood autism
spectrum disorders157 and schizophrenia158–160. Interestingly, these disorders have
also been linked to abnormal gyrification.125–128 Genetic mechanisms underlying
cognitive processes and neuropsychiatric disorders may also affect cortical
morphology in the temporal region, and in particular gyrification. Previous studies
have found links between genes underlying cognition function and temporal lobe
structure161,162, although the results are inconsistent.163 Thus further work is needed to
elucidate the presence of a genetic pleiotropic link between gyrification and function
of the temporal lobe.

Several mechanisms could explain how gyrification changes with age. One
explanation is that during brain development the cortical surface buckles due to
differential rates of growth of cortical layers164, and the opposite may occur during
adulthood. The rate of atrophy is higher in gray than white matter during early and
mid adulthood.165,166 Gray matter atrophy is mostly through the reduction of surface
area of the cortex, which leads to more shallow sulci and consequently a lower GI.
The rate of atrophy of white matter starts to exceed the rate for gray matter during
late adulthood83, which could in turn lead to an increase in gyrification with age.
Interestingly, a previous study found that after the age of 60 years the cingulate
cortex thickens and that the rate of thinning of the medial prefrontal cortex
declines167, which could explain the increased gyrification of the medial prefrontal
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cortex in our study. Indeed, we see a similar thinning of the cingulate cortex.
However, our findings also suggest that gyrification overall keeps decreasing during
older adulthood, thus other mechanisms than the different gray and white matter
atrophy rates are also likely involved.

Another plausible explanation is the “axon tension” theory168, which states that
axonal tension pulls the gyral walls inwards, thus folding the cortex. The axonal
tension may depend on the health status of the axon, and damage to axons could lead
to reduced tension and consequently decreased gyrification. White matter
microstructure decreases with age169,170 and white matter lesions accumulate from
mid adulthood onwards83, and could explain the decrease in gyrification. However,
further experimental work has discredited axonal tension as a cause of cortical
folding. For example, if axonal tension causes gyrification then cutting the gyrus
transaxially should unfold the gyrus, and experiments have shown that this is not the
case.171 Thus, further work is needed to elucidate the causes of cortical (un)folding
during adulthood.

Gyrification may also associate with age due to more technical aspects of the data
collection itself. Head motion may affect the relation between age and GI.172 The
reasoning for this is that older participants tend to move more with their head while
in the MRI. A previous study confirmed this and also found that head motion related
to LGI, although the association was not very strong.173 We attempted to minimize
the impact of head motion on the analyses by conservatively excluding all raw
images with suboptimal quality and further by performing sensitivity analyses with
the image quality metric as a covariate.

The study has several limitations. First of all, we relied on a cross-sectional study
design to examine age effects on gyrification. Cross-sectional estimation of age-
related changes may yield inaccurate estimates compared to longitudinal designs.54

Second, changes in gyrification likely cause changes in cognition, but the models
were specified with cognition as the determinant and gyrification as the outcome due
to limitations in the vertex-wise analysis modeling. Rerunning the models per cluster
with proper specification did show that the LGI clusters indeed associated with
cognition, suggesting that the models hold under proper specification. Third, the
cognitive test battery that was used does not cover all aspects of cognitive function.
Due to the emphasis on verbal tests we were not able to fully assess the scope of
cognition and gyrification. Fourth, in the case of cognition there may be reverse
causality, as higher intelligence tends to lead to a healthier lifestyle and thus better
brain health. We corrected for a number of variables related to lifestyle and their
effect on the association was minimal. Despite this there could still be residual
confounding by other variables that we did not account for. Fifth, while we excluded
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those with prevalent stroke and dementia, there could be other medical conditions
and confounders that could bias the results. For example, traumatic brain injury and
substance abuse disorders are known to accelerate brain and cognitive aging174–176,
and could subsequently affect the association of age and cognition with gyrification.
Our study also had several strengths. First, this is the largest sample size to date in a
study of gyrification and age or cognition, leading to sufficient statistical power to
find associations, and unravel new regional differences. Second, the individuals were
sampled from a wide age-range, thus enabling making accurate inferences about
gyrification even in the later phases of late adulthood. Third, the sample was drawn
from a population-based cohort, thus the findings can be generalized beyond a
clinical setting.

In conclusion, gyrification globally decreases linearly with age across the entirety of
adulthood, and gyrification in the medial prefrontal cortex increases towards the end
of life. Furthermore, gyrification increases with higher levels of cognitive
performance in some clusters irrespective of surface area. These findings consolidate
the importance of gyrification in normal brain function. Whether gyrification is a
viable marker for abnormal brain aging and cognitive decline towards the end of life
remains to be elucidated.
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With the number of patients suffering from brain diseases set to soar in
coming decades84 it has become of great importance to not only
understand normal functioning of the brain but also unravel when, how,

and where in the brain deviations take place from the path of normal aging towards
pathological degeneration and ultimately clinical disease. A first essential step is to
map normal aging trajectories of the structure and function of the brain. This
research question is as simple in its statement as it is complex in its
operationalization.

Magnetic resonance (MR) imaging has been the single most important contributor
to the in vivo investigation of brain structure and function. Over the last three
decades, an ever-increasing number of imaging datasets have become available
capturing every phase of the human lifespan. With these datasets, trajectories of
brain imaging markers in an aging population can be estimated, based on a single
brain scan per subject. With a single measurement, taken at a single moment in time,
merely a snapshot of the dynamic process of aging is taken. Considering the high
inter-subject variation, investigating what brain aging is with only cross-sectional
data is challenging.

While these cross-sectional studies have laid an important and solid foundation, to
investigate brain aging in more depth and to better discern between patterns of
normal versus abnormal aging, longitudinal data is essential to provide better insight
into the timing and sequence of changes in aging.54 Compared to cross-sectional
studies, with longitudinal data one is able to investigate when and how the deviations
from normal aging occur, rather than the average absolute differences between
young and older subjects. Distinguishing different trajectories based on longitudinal
data can be a starting point to study why certain persons show a different aging
pattern than others, which factors drive these differences, and what functional
outcomes these relate to.

A frequently used approach to investigate different patterns of changing imaging
markers over time, is to simply subtract measurements from two different time
points to identify subjects that increase, decrease or remain stable over time. Once
the subjects belonging to each of these categories are identified, comparing the
population characteristics between these groups could point towards potential
factors influencing the trajectories. Although this approach could be an important
first exploration, we believe that this use of longitudinal data is not living up to its
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full potential. First, classification of subjects into these three categories based on
only two longitudinal measurements could be very sensitive to noise and therefore
lead to misclassification. Second, the simplification of the course of the trajectories
makes it less sensitive to detect more subtle slope differences. Third, though in this
approach the slope of the subject-specific trajectories is taken into account, the age
on which these slope differences occur is not.

To give an example of how one can use longitudinal data to further explore different
patterns of imaging markers, assume the hypothetical situation that we have
identified using the method described above a potentially important factor that could
influence the aging trajectory: smoking. Figure 1A shows fictional subject-specific
trajectories of smokers and non-smokers for a specific imaging marker. We can then
use the subject-specific trajectories to study whether and how the differences in the
trajectories are explained by smoking. Instead of assuming that everyone follows the
same aging trajectory, only allowing for a different starting point (Figure 1B),
approaching smoking as an effect modifier of the effect of age on the marker is a way
to capture more subtle changes in the shape of the trajectory (Figure 1C). Even
though everyone follows their own trajectory, the effect of smoking can be
determined by estimating to which extent each subject-specific trajectory is
explained by smoking. Combining all that information gives an overall
approximation of the effect of smoking, that would have been missed or
underestimated when simply assuming that everyone has the same shape and that
smoking only influences the intercept.

Next to the ability to investigate different trajectories of a single imaging marker,
longitudinal data on not just one, but several markers within the same subject are
essential to assess how changes in these markers coincide and interact, and to assess
the temporality of these events. In our recent work we investigated the trajectories
and sequence of changing structural brain imaging markers in a large aging
population, using longitudinal brain imaging data.83 The resulting sequence of
changing markers could be interpreted as an average sequence of the broad spectrum
of normal aging in this population. We believe that within aging research, the field
can take example of research performed in the setting of diseases with a very
heterogeneous clinical presentation, such as multiple sclerosis. In these diseases,
timing of events such as the onset of certain symptoms or presence of disease
markers are already being used to investigate and identify subtypes of disease and to
predict progression of disease. Considering that we may never be able to draw a clear
line between normal aging and abnormal aging, we believe that with a special focus
on the timing and sequence of events in brain aging, we may also be able to identify
different patterns of aging in a similar way. This could greatly advance research into
brain health in old age.
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To summarize, more imaging data on the same subjects gives us the opportunity to
focus on timing and sequences of changes, which can help us to identify different
patterns within the broad spectrum of normal aging. This would bring us one step
closer towards understanding the sources of variability, and their implications,
within ‘normal’ aging.
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Figure 1: Fictional subject-specific trajectories of an imaging marker in aging, from
smokers and non-smokers (A), with population-based trajectories assuming that every
subject follows the same trajectory only allowing for a different starting point (B) and
population-based trajectories with smoking as an effect modifier (C).
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Introduction
Increasing evidence suggests an important role for arteriosclerosis in the etiology of
cognitive decline, and even dementia.208,209 The potential mechanism underlying the
link of arteriosclerosis with cognitive decline and dementia may be the presence of
subclinical, structural brain changes, including cerebral small vessel disease
(CSVD). Indeed, previous studies have shown that markers of systemic
arteriosclerosis are associated with white matter hyperintensities (WMH) and
cerebral microbleeds (CMB), and smaller brain tissue volumes.210–215 Despite these
important insights into the role of arteriosclerosis in the etiology of structural brain
changes, important knowledge gaps remain.

First, most studies focusing on the link between arteriosclerosis and structural brain
changes were cross-sectional and thus unable to capture the aging process in the
relation between arteriosclerosis and brain structure. Longitudinal data combining
image-based measurements of arteriosclerosis (CT) with those assessing brain
structure (MRI) are needed. Linkage of such data in a population-based setting with

Chapter 3.1 | Intracranial arteriosclerosis and brain aging

102

Intracranial arteriosclerosis has been increasingly recognized as a risk factor for
cognitive impairment and even dementia. A possible mechanism linking
intracranial arteriosclerosis to cognitive impairment and dementia involves
structural brain changes including cerebral small vessel disease (CSVD). To
assess whether intracranial carotid artery calcification (ICAC) and
vertebrobasilar artery calcification (VBAC), as proxies for intracranial
arteriosclerosis, are related to CSVD. Within the population-based Rotterdam
Study, between 2003 and 2006 a computed tomography (CT)-based
measurement of ICAC and VBAC and at least one magnetic resonance imaging
(MRI) measurement of structural brain changes were performed from 2005
onwards in 1,489 participants. To estimate the burden of calcification
independent of age, we computed age-adjusted percentile curves for ICAC and
VBAC separately, based on the calcification volumes. Using the longitudinal
MRI data, we assessed whether a larger calcification burden accelerates
structural brain changes using appropriate statistical models for repeated
outcome measures. A larger burden of ICAC and VBAC was associated with an
increase of CSVD markers accelerating over time. A larger burden of ICAC and
VBAC was not significantly (p > 0.05) associated with accelerated brain
atrophy. Arteriosclerosis is related to accelerating structural brain changes over
time.



a broad age-span could answer the question whether arteriosclerosis is associated
with accelerated brain structure changes, or whether this is merely an overall
difference in brain structure for which it is unclear when this difference originated.

Second, during the last decade it has become increasingly evident that the burden of
arteriosclerosis, although a systemic disease, may differ considerably across arteries
within the same person.216 This has also shown to translate into a differential
predictive value for various clinical manifestations of arteriosclerosis depending on
the proximity of the artery to the organ under study.208,217 Hence, vascular disease in
the intracranial arteries in particular may play an important role in the etiology of
structural brain changes. Yet, until now, most studies that investigated the effect of
arteriosclerosis on brain structure focused on the coronary or carotid arteries only.213–

215,218–221 Moreover, if studies investigated intracranial arteriosclerosis at all, these
generally focused on the anterior cerebral circulation.219,222 Yet, the posterior,
vertebrobasilar arterial system accommodates critical blood supply to the posterior
structures of the brain, but little is known regarding the influence of arteriosclerosis
in this vascular system on brain structure in aging.

To address these two major knowledge gaps, we investigated whether intracranial
carotid artery calcification (ICAC) and vertebrobasilar artery calcification (VBAC),
as proxies for intracranial arteriosclerosis, are associated with accelerated structural
brain changes over time.

Methods and Materials

Study population

This study is embedded within the Rotterdam Study, an ongoing population-based
study designed to investigate causes and determinants of age-related diseases since
1990. Participants aged ≥45 years are interviewed at home and examined at the
research center at baseline and during follow-up visits every 3−4 years. The design
of the Rotterdam Study has been described previously.194

Between 2003 and 2006, participants were invited to undergo multi-detector
computed tomography (MDCT) of the intracranial internal carotid arteries and
vertebrobasilar arteries, as part of a CT-imaging study aimed to visualize
calcification in major arteries. In total, 2,524 participants were scanned (response
rate, 78%). Due to imaging artefacts, 60 examinations were not gradable for the
presence of calcification in above mentioned arteries, leaving a total of 2,464
participants available for analyses. Since August 2005, brain MRI was implemented
in the core Rotterdam Study protocol, and repeated brain imaging was performed
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during consecutive research visits.194 out of the 2,464 participants with complete CT
examination, 1,681 participants underwent ≥1 MRI scan(s). A flowchart of the
number of in- and excluded participants with a CT, and the number of MRI scans for
each individual is shown in Supplemental Figure 1. All available MRI scans from
participants with a complete CT examination were included (n = 3,322) of which
brain MRI with incomplete acquisition, processing or CSVD ratings were excluded
(n = 250). Additionally, scans from participants who had a history of dementia or
symptomatic stroke (n =153) and scans with MRI-defined cortical infarcts (n = 69)
were excluded. In total, 2,850 MRI scans from 1,489 participants were available for
analysis.

Assessment of intracranial arteriosclerosis

A 16-slice (n = 724) or 64-slice (n = 1690) MDCT scanner (Somatom Sensation 16
or 64, Siemens, Forchheim, Germany) was used to perform non-contrast CT
scanning. Detailed information regarding imaging parameters is described
elsewhere.216 On a scan, ranging from the aortic root to the Circle of Willis,
calcification in the intracranial carotid arteries was quantified from the horizontal
segment of the petrous internal carotid artery to the top of the internal carotid artery.
(Bos et al., 2012a) Calcification in the intracranial vertebral arteries was assessed
from the level at which the vertebral arteries enter the skull to the level of merging
into the basilar artery. Calcification in the basilar artery was assessed from the merge
of the vertebral arteries to the top of the basilar artery.223

ICAC and VBAC were quantified by a semiautomatic scoring method that allows for
manual segmentation of calcification on CT-images223,224. After manual delineation
of the calcification, calcification volumes (mm3) were computed by multiplying the
number of pixels within the delineated area above 130 Hounsfield units by the pixel-
size and slice increment.218 The total volume of ICAC was calculated by summing
up the calcification volumes of the left and right intracranial carotid arteries. VBAC
was calculated as the sum of the calcification volumes of the vertebral arteries and
the basilar artery.

Assessment of structural brain changes

Brain MRI scanning was performed in all participants during the entire study period
on the same single 1.5-tesla MRI scanner (GE Signa Excite; GE Healthcare,
Milwaukee, USA). The scan protocol and sequence details have been described
elsewhere. (Ikram et al., 2020) In short, the protocol comprised of T1-weighted, PD,
Fluid-attenuated inversion recovery (FLAIR) and T2* gradient-recalled echo images
for assessment of focal CSVD markers and quantification of volumetric markers.
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Focal markers

Trained research physicians rated the presence, number and location of cortical
infarcts and lacunes, CMB and PVS.194 Infarcts showing involvement of cortical
gray matter were classified as cortical infarcts. Lacunes were defined as subcortical
lesions between ≥3mm and <15mm with signal intensity similar to CSF on all
sequences, and a hyperintense rim on the FLAIR sequence when located
supratentorially.44 CMB were rated as focal areas <10mm of very low signal
intensity on T2*-weighted imaging.194 PVS were determined according to a
standardized protocol and defined as linear, ovoid or round-shaped hyperintensities
of ≥1mm and <3mm on proton density-weighted images.45 The numbers of enlarged
PVS in the midbrain, hippocampi, basal ganglia and centrum semiovale were
quantified using an automated PVS algorithm, developed by Dubost et al.225 Further
description of the PVS algorithm can be found in the Supplemental Materials. Fluid-
attenuated inversion recovery (FLAIR) scans were used for the automated
segmentation of WMH volume, which is described in further detail for the brain
atrophy measures.

Volumetric markers

For brain atrophy, T1-weighted (voxel size 0.49 × 0.49 × 1.6mm3), proton density
weighted (voxel size 0.6 × 0.98 × 1.6mm3), and FLAIR (voxel size 0.78 × 1.12 ×
2.5mm3) scans were used for automated segmentation of supratentorial gray matter,
white matter, cerebrospinal fluid (CSF) and WMH. This automated segmentation
was based on a k-nearest neighbor classification algorithm.38,39 All scans were
transformed to the high-resolution data set (256 × 256 × 128) using tri-linear
interpolation. Automated processing tools from the Brain Imaging Center, Montreal
Neurological Institute and McGill University (www.bic.mni.mcgill.ca) were used to
co-register MRI data (based on mutual information) and subsequently normalize the
intensities for each feature image volume using N340. All segmentations were
visually inspected and manually corrected if needed. Total cerebral volume was the
sum of gray matter, normal appearing white matter and WMH volumes.
Supratentorial intracranial volume was estimated by summing gray and white matter
(including the sum of normal appearing white matter and WMH volumes) and CSF
volumes.38 Furthermore, T1-weighted scans were processed using FreeSurfer140

(version 5.1) to obtain white matter and cortex volumes of the cerebellum.

Statistical analysis

Characteristics of the study population at time of MDCT scan are presented in means
± standard deviations or medians with interquartile ranges for (skewed) continuous
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variables and in counts and percentages for categorical variables. We determined the
number of repeated MRI scans available for analyses. Since the time between the
intracranial calcification assessment and the first MRI was variable (a difference
ranging from 0 to 12 years), the increase in calcification at the time of the MRI scans
in this longitudinal study design was taken into account by creating age-adjusted
percentiles of calcification volumes. These percentile curves describe the burden of
calcification in comparison to the ‘average’ amount of calcification in an aging
population. Using this calcification percentile as the measure of calcification, we
assume that at the times that the follow-up MRI scans are performed, the increase in
calcification in that participant is in accordance with the expected increase of
calcification of the percentile curve. In other words, although the calcification is
expected to increase with age, a participants’ percentile remains stable over age.
These percentiles were created using the following strategy. First, to assure standard
normal distributed (natural log-transformed) calcification values at each age, we
used natural log-transformed values of the calcification volume and participants with
absence of calcification were not used for the estimation of the percentile curves.
Second, ICAC percentile curves were fitted on 2,021 participants and VBAC
percentile curves were fitted on 515 participants with presence of calcification
(Online Figure 1) using the Lambda-Mu-Sigma (LMS) method.226 In the
Supplemental Materials further explanation of this method can be found. Third,
using the percentile curve models which were fitted on participants with presence of
calcification, subject specific percentile values of all 2,464 participants with a
complete calcification assessment were determined for ICAC and VBAC. In this
step, to deal with calcification values of zero, 1mm3 was added to the non-
transformed values [Ln(calcification volume + 1.0mm3)]. Accordingly, the ICAC
and VBAC percentile values were used as the main determinants in this study, and
higher percentile values are interpreted as a larger burden of calcification.

We analyzed the relation between the percentile values, that is age-adjusted
calcification burden, and brain structure changes. We used generalized estimating
equations (GEE) for repeatedly measured categorical outcomes, and linear mixed
models for repeatedly measured continuous outcomes. Both GEE and linear mixed
models are statistical models that can deal with data from participants with only a
single MRI, as well as participants that have multiple MRI scans. Accordingly, GEE
models were used to assess the probability of having at least one microbleed or
lacune. To account for possible nonlinear trajectories, exploratory analyses were
performed to assess whether splines of age (with increasing degrees of freedom)
improved the model compared with a linear age term. As a result of these analyses,
splines of age with 1 knot were used in GEE analyses. An interaction of the
calcification percentile and the spline-coefficients of age was included, to allow
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slope differences in the relation of age and outcome explained by the burden of
calcification. Other covariables in the model were intracranial volume, sex, the
interaction sex and the spline-coefficients of age, to take potential slope differences
between men and women into account. In addition, stratified GEE analyses were
performed for the location of CMB (lobar, deep, infratentorial) and lacunes
(supratentorial, infratentorial).

Analysis of WMH and the total number of enlarged PVS were assessed using linear
mixed models with random intercepts and slopes. The total number of enlarged PVS
was calculated by summing up the number of PVS in the midbrain, hippocampi,
basal ganglia and centrum semiovale. WMH was natural log-transformed to account
for the skewed distribution. In each linear mixed model, age of the participant at
each MRI measurement was used as the time variable. Similar to the construction of
the GEE to account for possible nonlinear trajectories, exploratory analyses were
performed to assess whether splines of age (with increasing degrees of freedom)
improved the model compared with the linear age term. As a result, splines of age
with 2 knots were used in the linear mixed models. Similar to the GEE models, in
the linear mixed models an interaction of the calcification percentile, the spline-
coefficients of age, and the abovementioned covariables were included.

To assess the relation of ICAC and VBAC burden, as expressed in percentile values,
with brain atrophy, we also used linear mixed models with random intercepts and
slopes. The brain atrophy measures were global volumetric imaging markers
including volumes of white matter, normal appearing white matter, gray matter; total
cerebral volume; cerebellar white matter and cerebellar cortex volume. The linear
mixed models were constructed similarly as described above.

Two sensitivity analysis were performed: (1) to assess the role of cardiovascular risk
factors and extracranial carotid artery calcification on the relation between
intracranial arteriosclerosis and structural brain changes in aging, we corrected for
hypertension, type 2 diabetes mellitus, current smoking, obesity,
hypercholesterolemia and extracranial carotid artery calcification volume (mm3) in
all participants of whom information on these factors was available at the time of the
first MRI scan (787 participants with in total 1544 MRI scans) and (2) to assess
whether our statistical approach handles the time between CT and MRI sufficiently,
we performed our analysis in only the participants who had their first MRI within 1
year after the CT (641 participants with in total 1567 MRI scans).

Statistical analyses were performed with R statistical software (R-project, Institute
for Statistics and Mathematics, R Core Team (2013), version 3.4.1) using the
“geeglm” and “lme” functions from the R-packages “geepack” and “nlme”46,47.
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Results
In total 1,489 participants had a CT as well as at least one brain MRI available [2,850
MRI scans in total were included in this study (Supplemental Figure 1)]. Out of
1,489 participants, 650 participants had a single brain MRI scan, 367 participants
had two MRI scans, 422 participants had three MRI scans and 50 participants had
four MRI scans available for analysis. Characteristics of the participants included in
this study are presented in Table 1. The mean age at CT in this population was 67.9
years (range 59.0–91.9 years) and 52.0% were women. The average time difference
between CT and first MRI was 5.4 years (range 0.06–12.2 years). In Supplemental
Table 1, the brain structure characteristics of the study population are shown.

The ICAC and VBAC percentile curves are shown in Supplemental Figure 2. The
ICAC percentile curves showed a larger calcification volume with increasing age,
whereas for the VBAC percentile this increase in volume over age was less apparent.

Trajectories of focal markers and white matter hyperintensities

The estimated trajectories of focal markers in aging for the different calcification
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Characteristic Mean (SD), N = 1489
Age at CT, years 67.9 (5.7)
Sex, women 774 (52.0)
ICAC volumea, mm3 31 (98.8)
ICAC absent 313 (21.0)
ICAC present (> 0 mm3) 1176 (79.0)
ICAC percentile 37.7 (32.5)
VBAC volumeb, mm3 0 - 211.9
VBAC absent 1237 (83.1)
VBAC present (> 0 mm3) 252 (16.9)
VBAC percentile 24.3 (16.4)
Availability of MRI scans with acceptable segmentation
Number of participants with a single MRI scan 650 (43.7)
Number of participants with two MRI scans 367 (24.6)
Number of participants with three MRI scans 422 (28.3)
Number of participants with four MRI scans 50 (3.4)
Number of available MRI scans with acceptable segmentation 2850
Scan interval between MRI scans,years 3.3 (1.1)
Continuous variables are presented as means (standard deviations) and categorical variables as number
(percentages).
Key: ICAC, intracranial carotid artery calcification; N: number of participants; VBAC: vertebrobasilar
artery calcification.
aICAC volume is presented as median (interquartile range).
bVBAC volume is presented as minimum and maximum value.

Table 1. Characteristics of the study population
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Calcification Percentile Difference
in
probability
at age 60

Difference
in
probability
at age 80

p-value
percentile
term

p-value
percentile*age
interaction
term

White matter
hyperintensity
volume*

ICAC 25 0.13 0.56 0.006 0.339
50 0.27 1.17
75 0.41 1.83
100 0.57 2.54

VBAC 25 0.21 0.97 0.021 0.136
50 0.44 2.06
75 0.69 3.29
100 0.96 4.69

Microbleeds ICAC 25 0.02 0.04 0.092 0.078
50 0.05 0.08
75 0.08 0.12
100 0.11 0.17

VBAC 25 -0.02 0.06 0.435 0.044
50 -0.04 0.12
75 -0.05 0.19
100 -0.06 0.26

Lacunes ICAC 25 0.01 0.01 8.8 * 10−5 0.005
50 0.02 0.03
75 0.04 0.05
100 0.10 0.06

VBAC 25 0.00 0.01 0.411 0.337
50 0.01 0.03
75 0.02 0.04
100 0.03 0.06

Enlarged
perivascular
spaces⁎⁎

ICAC 25 0.3 -0.08 0.303 0.032
50 0.59 -0.16
75 0.89 -0.24
100 1.19 -0.31

VBAC 25 0.86 0.70 0.126 0.579
50 1.73 1.39
75 2.59 2.09
100 3.46 2.79

* Difference at age 60 and difference at age 80 expressed in ml (back-transformed);
**Difference at age 60 and difference at age 80 expressed in number of enlarged perivascular spaces.

Table 2. Overview of the quantitative measures of the trajectories of focal markers
and white matter hyperintensity volume shown in Figure 1, with the addition of
values for the percentile curves 25 and 75. The probability difference at age 60 and
80 represents the difference in probability between the trajectory of percentile 0 at
that specific age, compared to the percentile curve. A negative difference means a
lower volume compared to percentile 0. p-values below 0.05 were marked bold.



percentiles are depicted in Figure 1. In Table 2 the trajectories of microbleeds and
lacunes were quantified by showing the probability difference at age 60 and 80,
representing the difference in probability between the trajectory of percentile 0 at
that specific age, compared to the percentile curve. For white matter hyperintensity
volume, the difference at age 60 and difference at age 80 was expressed in ml (back-
transformed). For enlarged perivascular spaces, the difference at age 60 and
difference at age 80 was expressed in number of enlarged perivascular spaces. A
larger burden of ICAC and VBAC, that is higher percentile values, resulted in either
intercept differences, slope differences or both. Overall, trajectories of CSVD
markers showed more WMH and a higher probability of microbleeds and lacunes
with increasing burden of ICAC or VBAC. Increasing ICAC or VBAC burden
significantly increased WMH volume, however the slope was not significantly
affected by the burden of calcification. For microbleeds, the effect of a larger ICAC
burden seemed to be rather constant, whereas a larger VBAC burden seemed to
mainly influence the slope of the microbleeds probability over age.

Trajectories of location-specific microbleeds showed the same patterns for lobar,
deep and infratentorial microbleeds with larger ICAC and VBAC burden
(Supplemental Figure 3 and Supplemental Figure 4), where especially the
probability of deep microbleeds is significantly affected by the main effect of ICAC
and the interaction of VBAC and age (p = 0.041 and p = 0.031, Supplemental Table
2) .

For lacunes, ICAC significantly increased the probability of lacunes and
significantly modified the slope, whereas larger burden of VBAC did not
significantly affect the probability of lacunes. Trajectories of location-specific
lacunes showed similar patterns with significant effects of ICAC for both the main
effect and the interaction of ICAC and age on supratentorial lacunes. Only the main
effect of ICAC was statistically significant for the infratentorial lacunes (p = 0.021).
The main effect of VBAC was only significant in supratentorial lacunes (p = 0.023).

For the number of enlarged PVS, a larger burden of both ICAC and VBAC did not
significantly affect the number of enlarged PVS, nonetheless ICAC did significantly
modify the slope. Trajectories of location-specific enlarged PVS showed different
patterns with the number of hippocampal PVS being the most affected by both ICAC
and VBAC, and a significant increased number of PVS in the midbrain with
significant modified slopes of ICAC percentiles.
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Calcification Percentile Volume
difference at
age 60

Volume
difference at
age 80

p-value
percentile
term

p-value
percentile*age
interaction term

Total cerebral
volume

ICAC 25 -1.72 -2.53 0.087 0.091
50 -3.45 -5.05
75 -5.17 -7.58
100 -6.89 -10.11

VBAC 25 -2.73 -3.37 0.15 0.246
50 -5.47 -6.74
75 -8.2 -10.11
100 -10.94 -13.48

Cerebral gray
matter volume

ICAC 25 -0.27 0.29 0.794 0.312
50 -0.54 0.57
75 -0.81 0.86
100 -1.08 1.14

VBAC 25 -5.22 -1.03 0.057 0.167
50 -10.45 -2.07
75 -15.67 -3.1
100 -20.9 -4.13

Cerebral white
matter volume

ICAC 25 -1.84 -2.8 0.223 0.563
50 -3.69 -5.61
75 -5.53 -8.41
100 -7.38 -11.22

VBAC 25 0.52 -1.87 0.878 0.466
50 1.04 -3.75
75 1.56 -5.62
100 2.08 -7.5

Cerebral normal
appearing white
matter

ICAC 25 -2.23 -3.54 0.135 0.626
50 -4.45 -7.08
75 -6.68 -10.61
100 -8.91 -14.15

VBAC 25 0.64 -2.63 0.872 0.374
50 1.28 -5.26
75 1.92 -7.89
100 2.57 -10.52

Cerebellar white
matter volume

ICAC 25 -0.06 -0.02 0.162 0.155
50 -0.13 -0.04
75 -0.19 -0.06
100 -0.25 -0.08

VBAC 25 0.1 0.01 0.321 0.248
50 0.2 0.02
75 0.3 0.04
100 0.4 0.05

Cerebellar cortex ICAC 25 -0.1 -0.13 0.497 0.382
50 -0.2 -0.26
75 -0.31 -0.38
100 -0.41 -0.51

VBAC 25 -0.47 -0.08 0.152 0.145
50 -0.93 -0.15
75 -1.4 -0.23
100 -1.87 -0.31

Table 3. Overview of the quantitative measures of the global structural brain volume
trajectories shown in Figure 2, with the addition of values for the percentile curves 25 and
75. The volume difference at age 60 and 80 represents the volume difference between the
trajectory of percentile 0 at that specific age, compared to the percentile curve, expressed in
milliliter (ml). A negative difference means a lower volume compared to percentile 0.
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Trajectories of global volumetric markers

Trajectories of the global volumetric imaging markers in aging, for the different
calcification percentiles are shown in Figure 2. Although the trajectories showed a
pattern of smaller global volumes with larger burden of ICAC and VBAC, the main
effect of the percentiles on the volumetric outcomes and the interaction between age
and the percentiles were not statistically significant (p > 0.05). The effect of the
calcification burden on the volumetric outcomes and the corresponding statistical
significance level of the slope and interaction with age are presented in Table 3. To
further quantify these effects, we showed the volume difference at age 60 and age 80
between the trajectory of percentile 0 at that specific age, compared to the percentile
curve.

Sensitivity analyses

The associations between arteriosclerosis and structural brain changes in aging
showed similar effects and trends when corrected for cardiovascular risk factors and
extracranial carotid artery calcification, as without the correction for these factors.
Supplemental Figure 5 and 6 show the trajectories of CSVD markers, including
brain atrophy in aging for different arteriosclerosis percentiles when corrected for
these factors. In Supplemental Table 3, an overview of the presence of
cardiovascular risk factors within the study population is shown. Furthermore the
results within participants with less than 1 year between the CT and first MRI were
similar to the results with all participants included.

Discussion
Within this population-based study, we found that a larger burden of ICAC and
VBAC, as proxy of intracranial arteriosclerosis, was associated with accelerating
small vessel disease and overall smaller brain volumes over time, which includes
accelerated brain atrophy in aging.

Of all brain measurements, a larger burden of ICAC was most strongly associated
with WMH, deep microbleeds, supratentorial and infratentorial lacunes,
hippocampal and midbrain PVS. For larger VBAC burden, we found significant
relations with WMH, supratentorial lacunes, hippocampal PVS. Cross-sectionally,
we previously reported that ICAC is related to larger WMH volume, and presence of
lacunes, though no relation with microbleeds was found.218 This could partially be
explained by limited statistical power and the cross-sectional study design. Other
studies reported associations between arteriosclerosis in the internal carotid artery
and WMH and lacunes which are consistent with the findings in this study.227 Other
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studies also observed higher WMH burden, in population-based and patient cohorts
that used different imaging techniques like ultrasound and MRI to visualize carotid
atherosclerosis.210–213,220

To our knowledge, the current study is the first that showed the role of intracranial
arteriosclerosis in the anterior- and posterior circulation on brain changes while
capturing the concomitant aging process using longitudinal data. Muller et al.
concluded that in patients with arteriosclerotic disease, only severe and bilateral
carotid stenosis were related to progression of brain atrophy with 4 years of follow-
up.214 We have shown a pattern of a higher burden of arteriosclerosis being related to
accelerated brain atrophy over time, however these effects were not statistically
significant. Cross-sectional studies also found that markers of carotid arteriosclerosis
were associated with smaller brain volumes.219,220,228 In the Rotterdam study, we
previously described this matter and have found significant results for smaller total
brain and white matter volumes,219 albeit we could not reproduce these findings in
the present study. A possible explanation for the less pronounced finding in our study
is that in the cross-sectional study, the effect of carotid arteriosclerosis on brain
atrophy may be driven by age, simply because age was only corrected for linearly,
whereas in this study we conclude that arteriosclerosis has a non-linear relation with
age. Furthermore, with the longitudinal data we were able to account for the complex
non-linear relations between age and arteriosclerosis as well as age and brain
structure.

Given potential variation in genetic susceptibility to arteriosclerosis, and differences
in anatomical structure between the vertebrobasilar and intracranial carotid arteries
in terms of curvatures and branches, consequences of arteriosclerosis are likely to be
artery-specific or at least – besides the influence of systemic arteriosclerosis - contain
an artery-specific component223,229. Therein VBAC is commonly neglected in studies
as an investigation site for arterial lesion.230 Identifying pathophysiological
mechanisms of intracranial arteriosclerosis at large could aid development of
location-specific therapeutic and preventive implications231. Beyond etiology, the
predictive value of intracranial calcification needs to be evaluated for its potential as
a noninvasive marker to reflect the severity of intracranial vascular disease. Similar
to the coronary artery calcium score predicting acute coronary disease,232 such
insight could benefit the identification of high risk individuals for neurological
diseases.

The trajectories of brain structure changes in aging and how these are related to the
burden of intracranial arteriosclerosis provide insight in the effect of arteriosclerosis
over time. However, the current study does not address whether the relation between
intracranial arteriosclerosis and the structural brain changes is causal. Although we
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performed a sensitivity analysis that showed similar results when corrected for
cardiovascular risk factors and extracranial carotid artery calcification at the time of
the first MRI, we did not account for time-dependent confounding of these factors.
Therefore, the associations found in this study could be partly driven by other
factors, including changes in cardiovascular risk factors over time and progression
of arteriosclerosis at large instead of solely the burden of intracranial arteriosclerosis
at the time of the CT examination. However, identifying the potential effect of
arteriosclerosis on brain structure changes is an important step forward that can
motivate future studies to explore the significance of these associations.

Strengths

Strengths of this study are the large study population including extensive and
longitudinal data on brain markers. Repeated measurements of brain MRI allowed
us to take into account the effect of arteriosclerosis on brain changes, longitudinally.
To thoroughly account for the effect of aging, which plays a pivotal role in
development of arteriosclerosis, we applied age-adjusted percentile curves.
Moreover, we performed sensitivity analyses to account for nonlinear trajectories
with splines of age and interaction terms.

Limitations

Yet potential limitations also need to be addressed. First, to quantify intracranial
arteriosclerosis, only calcified plaques were assessed since non-calcified plaques,
also known as vulnerable soft plaques are impossible to visualize with CT.
Nevertheless, arterial calcification has been recognized an adequate marker of the
total plaque burden233. Second, although the average follow-up time was 5.4 years,
which is a relatively long follow-up time within the field, a longer follow-up time
would better allow to capture the aging effect on brain health, especially in terms of
evaluating brain volumes. Third, as a subgroup of participants had multiple scans
available for analysis a healthy survivor effect may have occurred, which could
reduce the range of calcification in the vessels and thus attenuate true associations.
Fourth, only longitudinal measurements for brain MRI were available but we had no
follow-up CT measurements. With the use of the calcification percentiles we take
into account the burden of calcification with respect to the normal aging process. The
percentile curves describe the burden of calcification in comparison to the ‘average’
amount of calcification in an aging population. Using this calcification percentile of
a study participant at a certain age as our measure of arteriosclerosis, we assume that
at the times that the follow-up MRI scans are performed, the increase in
arteriosclerosis in that participant is in accordance with the expected increase of the
percentile curve. In other words, although the burden of arteriosclerosis is expected
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to increase with age, the participants’ percentile remains stable over age. Whether
this assumption holds needs to be assessed in future research. Especially for VBAC
it is uncertain whether this assumption holds, since the prevalence of VBAC in our
population is rather low. Therefore the effect of the volume of VBAC may be less
apparent while we might fail to recognize the value of VBAC presence, and
incidence during follow-up of which the latter we have not been able to measure.
Lastly, although a major strength of this study is that we addressed both the anterior
cerebral circulation and the posterior anterior cerebral circulation, we cannot rule out
the possibility that our findings may partly reflect the influence of systemic
arteriosclerosis.. However, cross-sectional studies within the same study populations
have shown that arteriosclerosis within the intracranial arteries in particular, as
compared to other major vessel beds, was most strongly related to smaller white
matter volume, and larger WMH volumes218,219.

Conclusions

A larger burden intracranial arteriosclerosis is associated with accelerating small
vessel disease over time. Identifying pathophysiological mechanisms of intracranial
arteriosclerosis could help to lower the vascular burden in the brain and eventually
prevent stroke, cognitive impairment and dementia.

3

117





Cardiovascular
health in relation

to trajectories of imaging markers in
brain ageing

EJ Vinke, HA Vrooman, WJ Niessen, T Voortman,
MA Ikram, MW Vernooij

Submitted

3.2





Hearing loss and
cognitive decline

in the general population: a
prospective cohort study

PH Croll*, EJ Vinke*, NM Armstrong, S Licher,
MW Vernooij, RJ Baatenburg de Jong, A

Goedegebure, MA Ikram

Journal of Neurology.
2021;268(3):860-871

3.3



Introduction
Recently, hearing loss has been put forward as a promising modifiable risk factor for
cognitive decline and dementia.121,244–247 Both the prevalence of hearing loss and
dementia will increase substantially due to the aging of the worldwide
population.121,248,249 With the increasing numbers of both conditions, it is of great
importance to determine if hearing loss is independently associated with cognitive
decline in dementia-free participants. As such, more can be said on whether hearing
rehabilitative treatments may potentially alter or delay the progression of cognitive
decline.

Several longitudinal studies reported associations between hearing loss and poorer
cognitive function250, and with an increased risk of dementia.244,246,248,251–254 Despite
these promising results, several methodological issues should be considered. First,
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Previous studies identifying hearing loss as a promising modifiable risk factor
for cognitive decline mostly adjusted for baseline age solely. As such a faster
cognitive decline at a higher age, which is expected considering the non-linear
relationship between cognition and age, may have been overlooked. Therefore
it remains uncertain whether effects of hearing loss on cognitive decline extend
beyond age-related declines of cognitive function. 3,590 non-demented
participants were eligible for analysis at baseline, and a maximum of 837
participants were eligible for the longitudinal analysis. Hearing loss was
defined at baseline. Cognitive function was measured at baseline and at follow-
up (4.4 years [SD: 0.2]). Multivariable linear regression analysis was used for
the cross-sectional analysis. Linear mixed models were used to assess the
longitudinal association between hearing loss and cognitive decline over time
while adjusting for confounders and the interaction of age and follow-up time.
Hearing loss was associated with lower cognitive function at baseline.
Moreover, hearing loss was associated with accelerated cognitive decline over
time on a memory test. After additionally adjusting for the interaction between
age and follow-up time, we found that hearing loss did not accelerate cognitive
decline anymore. Hearing loss was associated with lower cognitive function at
baseline and accelerated cognitive decline on a memory test. The association
between hearing loss and accelerated cognitive decline was non-significant
after additional adjustment for non-linear age effects. More evidence is needed
to ensure the role of hearing loss as a modifiable risk factor for cognitive
decline.



both hearing loss and cognitive impairment are heavily dependent on age, reflected
in a steep increase of the prevalence of both with increasing age.74,249 Therefore, it is
of importance to adjust for both linear and non-linear age effects in the association
between hearing loss and cognition. To our knowledge, only one other study
incorporated age non-linearly in their models.250 Yet, it is plausible that older people
may decline faster over time on cognitive abilities compared to their younger
counterparts. Keeping this age-related decline into account can be accomplished by
adding an interaction between age and follow-up time into statistical models.
Second, some studies rely on a limited battery of neuropsychological tests for
cognitive assessment.245,253,255–265 This potentially increases the likelihood of
misclassification of cognitive impairment266, especially in those with higher levels of
hearing impairment. Lower scores on cognitive tests may partially be falsely
attributed to cognitive impairment, as individuals might not be able to hear verbal
test instructions properly.267,268 Third, hearing loss does not necessarily accurately
reflect an inability to follow speech in noisy environments.269 To our knowledge,
only one other study incorporated a measure of speech understanding in their
analyses.265

Against this background, we aimed to elucidate whether hearing loss accelerates
cognitive decline over time in dementia-free participants whom are at risk of
cognitive decline and cognitive impairment from a large population-based study. We
measured hearing loss, including speech understanding, and repeatedly assessed
cognitive functioning with comprehensive cognitive testing. We examined whether
trajectories of cognitive decline differed across degrees of hearing impairment while
adjusting for potentially strong effects of age.

Methods

Study setting and population

This study is embedded in the Rotterdam Study, a prospective, population-based
cohort study. The Rotterdam Study was initiated in 1989 and investigates
determinants and consequences of aging. Details of the study have been described
previously.194 The entire study population consists of 14,926 individuals aged ≥ 45
years from the Ommoord area, a suburb of Rotterdam, the Netherlands, who undergo
extensive examinations at the research center at study entry and subsequent visits
every 3–4 years. In 2011, hearing assessment was introduced into the study protocol.
For the present study, we sampled two study populations, described in detail below.
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Hearing loss and cognitive function: cross-sectional study population

In total, 3739 participants underwent baseline hearing assessment (2011–2014). We
excluded participants with probable conductive hearing loss (air–bone gap ≥ 15 dB;
N = 83), participants with a history of dementia or those who were insufficiently
screened for dementia at baseline (N = 51), and participants who developed
dementia during follow-up (N = 15), leaving 3590 participants with baseline hearing
assessment. From those 3590 participants, data were available on different cognitive
tests, namely the MMSE (N = 3584), the Stroop test (N = 3500), the Word Fluency
test (WFT) (N = 3536), the Letter Digit Substitution test (LDST) (N = 3507), the
Word Learning test (WLT) (N = 3239), and the Purdue Pegboard test (PPT)
(N = 3264). There were 3498 participants with both data on hearing thresholds and
speech understanding in noise.

Hearing loss and cognitive decline: longitudinal study population

Data on the different cognitive tests from participants who were re-invited for
follow-up measurements and with available cognitive data at baseline, were
available at follow-up (2015–2016) for the longitudinal analysis. At follow-up, 837
participants had data available for the MMSE, 764 participants for the Stroop test,
519 participants for the WFT, 780 participants for the LDST, 755 participants for the
WLT, and 714 participants for the PPT. The mean time interval between cognitive
baseline assessment and re-examination was 4.4 years (SD: 0.2). See supplementary
methods for an explanation regarding the attrition rate.

Hearing

Hearing thresholds measured with pure-tone audiometry

To determine hearing loss expressed by hearing thresholds in decibel (dB), pure-tone
audiometry (PTA) was performed in a soundproof booth.194 A computer-based
audiometry system (Decos Technology Group, version 210.2.6, AudioNigma
interface) and TDH-39 headphones were used. dB hearing levels were measured
according to the ISO-standard 8253-1 (International Organization for
Standardization, 2010). Air conduction (frequencies 0.25–8 kilohertz [kHz]) and
bone conduction (0.5 and 4 kHz) were tested for both ears while masking according
to the method of Hood.270 The best hearing ear was determined by taking the average
hearing thresholds over all frequencies and identified by the lowest hearing threshold
of one of both ears. Of the best hearing ear, we determined the average speech
frequencies threshold (average of 0.5, 1, 2, and 4 kHz) levels.
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Finally, we determined degrees of hearing loss: normal hearing (0–20 dB), mild
hearing loss (20–35 dB), moderate hearing loss (35–50 dB), and severe hearing loss
(≥ 50 dB).194,271

Speech understanding in noise measured with the digits-in-noise test

To measure speech understanding in noise, we derived a signal-to-noise ratio (SNR;
in dB) from the digits-in-noise (DIN) test, a 3-min test of speech understanding in
noise.272 Both speech and noise signal were presented in the participant’s better
hearing ear. Pre-recorded male-spoken speech-signal consisted of 24 digit triplets.
Initially, the triplet was presented at 0 dB SNR. In case of an incorrect response, the
next triplet was presented more intensely. After the first correct response, the speech
level was decreased and a new stimulus was presented. For a correct response, the
intensity was decreased again, while an incorrect response lead to an increase of the
intensity. This was repeated until 24 triplets were repeated. SNR was the average of
the last 20 triplets. We defined hearing categories based on optimal SNR cut points
defined by clinically relevant degree of hearing loss using Youden’s Index
(Supplementary Figure 1).273

Cognition

Cognitive function was assessed in detail with an extensive neuropsychological test
battery comprising the MMSE, the Stroop test (adjusted interference score; inverted
as higher scores indicate worse performance), the WFT (amount of animals named
within 60 s), the LDST (number of correct digits within 60 s), the 15-WLT (total
number of words remembered at least 10 min after immediate recall), and the PPT
(sum score of three trials). The MMSE was administered during a home visit, the
other tests were administered at the research center. All tests instructions were
presented verbally. The MMSE is a validated screening tool for cognitive decline
and cognitive impairment.195 The Stroop test is a validated test measuring executive
functioning, more specifically it measures the ability to inhibit cognitive
interference.274 To accurately and reliably measure verbal fluency, the WFT was
used275. With the validated LDST, we measured executive functioning including
processing speed and attention.90 The 15-WLT is a validated test measuring memory
functioning.88 Results of the WLT are not negatively influenced by hearing status, as
the 15 different words are visually presented to the participants. The PPT is a
validated measure of unilateral and bilateral fine manual dexterity.95
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Covariates

During home interviews, educational level was assessed and categorized as primary
education, lower education, intermediate vocational education and higher education.
Smoking habits were assessed during the same interview and subsequently classified
into never, former and current smoking.194 Alcohol consumption was assessed
through self-report with the food-frequency questionnaire236, and we subsequently
calculated daily alcohol consumption in grams.236 Systolic and diastolic blood
pressures were measured twice on the right arm with a random-zero
sphygmomanometer; the mean of these readings was used for the analyses. Use of
antihypertensive medication was assessed by interview.194 Participants were
screened for dementia at baseline and follow-up examinations using a protocol
described in detail elsewhere.197

Statistics

We investigated whether baseline characteristics differed between participants with
just a baseline assessment and participants with both a baseline and a follow-up
assessment using T tests, χ2 tests, and Mann–Whitney U Tests when appropriate.
Subsequently, we present three sequential analyses to examine the association
between hearing loss and cognition. First, we assessed the cross-sectional
association between hearing loss (all frequencies, speech frequencies, degrees of
hearing loss and SNR) and cognitive functioning at baseline using multivariable
linear regression models. We adjusted for age, age2, sex, education, alcohol
consumption, smoking behavior, systolic- and diastolic blood pressure, and use of
blood pressure lowering medication. All SNR analyses were additionally adjusted by
PTA hearing levels for all frequencies.

Second, we used linear mixed models with random intercepts and slopes to elucidate
the longitudinal association between degrees of hearing loss (mild, moderate or
severe compared to normal hearing defined by either PTA or SNR) and cognitive
trajectories per test. In each model, we entered follow-up time in years after baseline
measurement to use as time variable. For adjustment, we used the same models as
described above. In a second model, a two-way interaction between age and follow-
up time was added to account for possible slope differences for cognition over time,
depending on the baseline age. All SNR analyses were additionally adjusted by PTA
hearing thresholds. Next to the linear effects of hearing loss on cognition, an
interaction of hearing loss and follow-up time was incorporated in all models, to
allow slope differences in the relationship between cognitive functioning and time
explained by degree of hearing loss. The linear hearing loss term (intercept
difference) and the interaction term between hearing loss and follow-up time (slope
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difference) are the main terms of interest in this longitudinal analysis. For SNR
analysis, random slopes were not included as the models failed to converge.

Third, we performed similar linear mixed models to study the longitudinal
association between hearing levels (all frequencies, speech frequencies, and SNR)
and cognitive trajectories per test.

In sensitivity analyses, we explored whether longitudinal associations between
hearing levels and cognitive trajectories differed between men and women and
between mid-life (51–70 years) compared to late life (70–99 years). Originally, the
MMSE was designed as a cognitive screening tool and is therefore limited in its
capability to truly measure global cognitive functioning.195 In an additional
sensitivity analyses, we created a global cognition score, a g factor, by z
transforming and averaging performance across each of the tests (except for the
MMSE). Results were non-significant and effect estimates were smaller than those
for the MMSE, indicating that the g factor in this sample cannot be considered as a
more sensitive marker of global cognition than the MMSE. To facilitate
interpretability and comparability (previous studies often used the MMSE), we
chose to show the results for the MMSE and omit results regarding the g-factor from
the final manuscript.

IBM SPSS Statistics version 25 (International Business Machines Corporation,
Armonk, New York) and RStudio; integrated development environment for R,
version 3.5.1. (RStudio, Boston, Massachusetts) were used for statistical analyses.
Analyses with linear mixed models were done using the “lme” function of the R-
package “nlme”.46 A p value < 0.05 was considered statistically significant.
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Results
Table 1 shows the baseline characteristics of the study population. Mean age was
65.2 years (SD: 7.3). 56.2% of our population were female. Participants had a mean
all frequency hearing threshold of 22.8 dB (SD: 11.1). 44.6% of the population had
normal hearing threshold levels. For speech understanding in noise, mean SNR was
− 4.06 dB (SD: 4.2). Participants with a follow-up assessment compared to
participants with only a baseline assessment were significantly older, had a lower
alcohol intake and were unhealthier (Supplementary Table 1).

Cross-sectional results

Table 2 shows the cross-sectional association between hearing loss and cognitive
function. Elevated hearing thresholds and diminished speech in noise understanding
were associated with lower scores on all cognitive tests, and appeared to be most
pronounced for participants with severe hearing loss as compared to normal hearing
on the Stroop test, WFT, LDST and the PPT (Table 2).

Longitudinal results

In the first model, mild hearing loss showed statistically significant intercept
differences, compared to normal hearing thresholds on the WFT, LDST, and the PPT
(Table 3). In line with this, mild and moderate degrees of hearing loss, showed
intercept differences for all cognitive tests, though not statistically significant (Table
3; model 1). Longitudinally, moderate hearing loss as compared to normal hearing
thresholds modified the slope of memory functioning as measured with the 15-WLT
significantly over time. For the other cognitive tests no significant slope differences
were identified (Table 4; model 1). No significant slope differences were found for
any hearing loss, as compared to normal speech understanding in noise (Table 4,
model 1). The significant slope difference of the 15-WLT became statistically non-
significant, and slope differences of other cognitive tests became small or close to
zero (Table 3; model 2; Figure 1) after additional adjustment for the interaction
between age and follow-up time. Comparable results were found for degrees of
hearing loss as measured with the DIN test (Table 4; model 2).

Moreover, assessing hearing levels continuously showed that the additional change
in cognitive functioning attributable to hearing loss were small and non-significant
for both hearing thresholds and speech understanding in noise (Supplementary Table
2). Results did not differ between males and females or between midlife and late-life
(Supplementary Tables 3 and 4).
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Baseline characteristics N = 3590
Age [years (SD)] 65.2 (7.3)
Age (range) 51.5–98.6
Female [N (%)] 2016 (56.2)
Educational level [N (%)]
Primary 264 (7.4)
Lower 1330 (37.0)
Intermediate vocational 1049 (29.2)
Higher 925 (25.8)
Alcohol consumptiona, gram (IQR) 7.9 (1.4–19.1)
Smoking [N (%)]
Never 1134 (33.5)
Past 1828 (50.9)
Current 611 (17.0)
Systolic blood pressure, mmHg (SD) 139.5 (21.0)
Diastolic blood pressure, mmHg (SD) 83.1 (11.2)
Use of blood pressure lowering medication [N (%)] 1449 (40.4)
Hearing thresholds measured with pure-tone audiometry
All frequency hearing loss [dB (SD)] 20.8 (9.7)
Speech frequency hearing loss [dB (SD)] 20.0 (10.7)
Degree of hearing loss [N (%)]
Normal (0–20 dB) 1601 (44.6)
Mild (20–35 dB) 1456 (40.6)
Moderate (35–50 dB) 425 (11.8)
Severe (50 dB) 79 (2.2)

Speech understanding in noise measured with the digits-in-noise test N = 3498
Signal-to-noise ratio [dB (SD)] − 4.06 (4.2)
Degree of hearing loss [N (%)]
Normal (0–20 dB) 1662 (46.3)
Mild (20–35 dB) 837 (23.3)
Moderate/severe (35–50 dB) 1,091 (30.4)

Cognitive abilities
Mini-Mental State Examination scorea (IQR) 29.0 (27.0–29.0)
Stroop Test interference scorea (IQR) 44.5 (37.9–54.1)
Word Fluency Test scorea (IQR) 23.0 (19.0–27.0)
Letter Digit Substitution Test scorea (IQR) 30.0 (26.0–35.0)
Word Learning Test delayed recall scorea (IQR) 8.0 (6.0–10.0)
Purdue Pegboard Test sum scorea (IQR) 36.0 (33.0–39.0)

Values are mean (standard deviation [SD]) for continuous variables or a median (interquartile range
[IQR]) for non-normally distributed continuous variables and percentages for categorical variables. The
amount of hearing loss is expressed in dB, i.e. a higher dB value reflects more hearing loss.
Abbreviations: dB, decibel; mmHg, millimetres of mercury.

Table 1. Baseline characteristics
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Discussion
In this large population-based study in non-demented older adults at risk for
cognitive decline and cognitive impairment, we found that hearing loss was
associated with poorer global cognitive functioning, executive functioning, verbal
fluency, attention, memory, and manual dexterity. After adjustment for the possible
non-linear effects of age on cognitive change during follow-up, we did not find that
hearing loss for either hearing thresholds or speech understanding in noise
accelerates cognitive decline over time.

Strengths of this study are its prospective and longitudinal population-based design,
the large sample size and the standardized assessment of hearing thresholds with
pure-tone audiometry and a speech-in-noise test as well as cognitive functioning
with comprehensive cognitive testing. However, the following limitations of this
study must be considered. First, although we extensively adjusted for age and other
important confounders, residual confounding might still be present. For example,
frailty and psychosocial well-being may confound our results as those are known to
be highly related to age-related hearing loss.276,277 Second, dementia incidence of
participants with a baseline hearing assessment is small (N = 15), precluding the
possibility to analyze whether hearing loss is associated with an increased risk of
dementia in this sample.

Our cross-sectional results were comparable with other studies, reflected in lower
scores on cognitive tests with higher levels of hearing loss.245,255,278 It is of great
interest that based on our results hearing loss (both peripheral and central) seems to
affect executive functioning, verbal fluency, memory, manual dexterity and to some
extent global cognitive functioning. Previous studies have argued that hearing loss
leads to an increased cognitive load, shifting cognitive capacities towards sensory
impairments rather than cognition.254 Therefore, processes such as attention,
memory, executive functioning, inhibitory control and verbal fluency may be
compromised as a result of hearing loss. Moreover, cognitive decline, and especially
diminished executive functioning, has repeatedly been linked to an increased risk of
general frailty.279 Even though we cannot infer on causality in this cross-sectional
analysis, it does shed important light on a general risk of frailty in elderly with
hearing impairment and comorbid compromised cognitive functioning. This
underlines the great importance of investigating whether timely rehabilitative
hearing treatment may alter or delay cognitive decline and possibly lowering the risk
of full-blown dementia and/or general frailty.277,280

In our longitudinal analysis we found an accelerated decline in memory function (as
measured with the 15-WLT) with moderate hearing loss, which is comparable to the
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results and effect estimates of other population-based studies.250,253 Unexpectedly, we
did not find such an association for participants with severe levels of hearing loss,
which could be explained by its relatively low prevalence (2.2%). Importantly, with
further adjustment for confounding by age, the association between hearing loss and
memory function became weaker and statistically non-significant. The prevalence of
both hearing- and cognitive impairment increases substantially with age.121,249

Moreover, it is also important to consider, especially in longitudinal studies with a
wider age range that older individuals may decline faster on cognitive test
performance between baseline and follow-up measurement than their younger
counterparts.267 Therefore, we added the interaction between baseline age and
follow-up time into our statistical models, which seemed to explain most of the
effects of hearing loss on memory function as the slope difference becomes
statistically non-significant in the second model. To our knowledge, only one other
study incorporated non-linear effects of age in their statistical model.250 Therefore,
verification in future studies is needed to explore whether effects of hearing loss on
cognitive decline extend beyond ‘normal’ age-related decline of cognitive function.

Besides elevated hearing thresholds, speech understanding in noise could contribute
towards accelerated cognitive decline. The ability to understand speech in noise is a
complex process in which elements of peripheral processing interact with more
centrally located elements of auditory processing.272 As such, it may be hypothesized
that a potential association with cognitive functioning may even be stronger when
specifically speech understanding is reduced. Interestingly, we found the same (non-
significant) results between speech understanding in noise and cognitive decline.
This may be explained by the fact that there is a high correlation between hearing
loss based on audiometry and speech in noise results in our population.272

It is also worthwhile considering whether found associations in our and previous
studies might be driven by confounding and/or bias. The absence of an effect of
hearing loss on cognitive decline in the current study is not explained by selection
bias, as the sample with both a baseline- and a follow-up measurement were
significantly older than the participants with just a baseline measurement. Moreover,
it has been proposed that upstream common causes, i.e., inflammation, vascular
pathology, and other systemic neurodegenerative processes, may lead to both
hearing loss and cognitive decline through central nervous system-wide functional
decline, rather than that those two are directly related to one another.267 As such,
greater sensitivity in one domain could identify impairments in that domain prior to
the other, leading to the appearance of a false direct association.267,268

We should also acknowledge that our follow-up time (mean = 4.4 years) may have
been too short to capture a possible small, but significant effect of hearing loss on
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cognition. Epidemiological evidence has shown that elevated blood pressure in mid-
life, an established modifiable risk factor of dementia, increases the risk of cognitive
impairment 20–30 years later.281–284 In contrast, another study with a follow-up of 8
years did not find an association between hypertension and cognitive functioning.285

The differences in these results suggest that the follow-up time would need to be
longer to show a potential association of hearing loss with cognitive decline.
Nevertheless, despite the relatively short follow-up time, we do find an effect of mild
hearing loss on memory functioning in the first model which is both statistically
significant as well as clinically relevant.244,250 Would our follow-up time truly been
too short to capture an effect of hearing loss on cognitive function, we would have
expected non-significant results.

In conclusion, hearing loss was significantly associated with compromised cognitive
function and with accelerated decline on the 15-WLT measuring memory function.
Notably, the latter association seemed to be driven by non-linear effects of age.
Future, population-based studies are needed to further confirm the role of hearing
loss as a potential modifiable risk factor for cognitive decline, whilst paying
attention to effects of age on cognition. Even though more research is needed to
strengthen evidence between hearing loss and accelerated neurodegeneration, our
results do underline the great importance to acknowledge the effects of hearing loss
(whether it being direct or indirect) on compromised cognitive function and
associated general frailty within the elderly.
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Introduction
Methods to assist (early) diagnosis of neurological diseases and neuropsychiatric
disorders in a clinical setting are of great importance. Noninvasive brain imaging,
for example, with magnetic resonance imaging (MRI), is an increasingly applied
diagnostic tool to detect brain pathology. To detect pathology on brain imaging, an
understanding of what is normal is important, especially in diseases with a strong
age-related component. A background of “normal aging” should therefore be taken
into account, something that is difficult to estimate on a visual assessment alone.
Many studies have focused on creating normative values of a broad spectrum of
imaging markers of the human brain. By combining small to relatively large imaging
data samples of healthy controls from different studies to one large imaging data set,
normative values for different brain structure regions in aging were estimated and
presented for clinical use.286–290 With more and more brain imaging data from large
population cohorts being publicly accessible, simply choosing a single population
cohort to use as reference data would be feasible and in many (clinical) settings the
most pragmatic option. However, the ideal reference population is the base
population from which that individual patient arises, but data from such a population
are rarely available in the clinical setting. Although the added value for diagnostic
purposes of the use of normative values on top of visual assessment alone in a
clinical setting is increasingly recognized291–294, it is not known to what extent

Chapter 4.1 | Normative brain volumetry derived from different reference populations

150

Brain imaging data are increasingly made publicly accessible, and volumetric
imaging measures derived from population-based cohorts may serve as
normative data for individual patient diagnostic assessment. Yet, these
normative cohorts are usually not a perfect reflection of a patient's base
population, nor are imaging parameters such as field strength or scanner type
similar. In this proof of principle study, we assessed differences between
reference curves of subcortical structure volumes of normal controls derived
from two population-based studies and a case-control study. We assessed the
impact of any differences on individual assessment of brain structure volumes.
Percentile curves were fitted on the three healthy cohorts. Next, percentile
values for these subcortical structures for individual patients from these three
cohorts, 91 mild cognitive impairment and 95 Alzheimer's disease cases and
patients from the Alzheimer Center, were calculated, based on the distributions
of each of the three cohorts. Overall, we found that the subcortical volume
normative data from these cohorts are highly interchangeable, suggesting more
flexibility in clinical implementation.



variations in reference populations may affect the individual patient comparison to
reference data. Furthermore, the choice of reference population is accompanied by
differences in scanner types, field strength, and acquisition parameters between
normative cohorts, which could introduce variation in results obtained from
automated brain segmentation methods. Regarding the latter, several studies
examined the robustness of automated segmentation methods across field strengths
and scanner types, which have shown that reproducible segmentations can be
obtained with residual volumetric variability of a few percent.295–299 Yet, even with a
perfectly robust segmentation method, the question remains whether population
differences in structural brain volumes may impact individual patient comparison
and whether this would lead to different clinical management. Are reference
populations derived from case-control studies, “healthy controls” for example,
similar to reference populations derived from population-based cohorts? Or does a
reference population need to be similar to the base population from which an
individual patient arises? Studies using normative reference data for diagnosis of
neurological diseases, such as Alzheimer's disease (AD), commonly focus on
volumetric changes in cortical gray matters areas.287,300 More recently, interest in the
role of volume and shape of subcortical brain structures is growing as relevant
(early) brain imaging markers.301–303 A novel approach for subcortical brain
segmentation in T1-weighted MRI brain scans was recently presented, based on a
shape-constrained deformable surface model.304 Experiments on data both 3T and
1.5T for different scanners indicate good agreement with respect to independent
ground truth segmentations of the subcortical structures using this model-based
brain segmentation (MBS) approach, regardless of the field strength or vendor. In
this proof-of-principle study, we assessed differences in normative reference curves
for subcortical structure volumes (including hippocampal volume) segmented with
the MBS method, between reference populations derived from two population-based
studies and normal controls from a large case-control study. Furthermore, we
assessed the impact of using these different cohorts on individuals with a higher risk
of developing AD (APOE ε4 allele carriers and subjects with mild cognitive
impairment (MCI)) and patients with AD.

Material

Reference populations

In this study, cross-sectional samples of three reference populations were used to
estimate and compare the subcortical volume percentile curves. The reference
populations included the Rotterdam Study, the United Kingdom Biobank (UKBB),
and normal controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI).
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These studies were approved by a research or medical ethical committee, and
informed consent was obtained from all subjects. From each study, 3D T1-weighted
imaging data were used for subcortical structure segmentation. In Supplemental
Figure 1 the age-distribution of the healthy participants of the Rotterdam Study,
ADNI and UKBB are shown.

Rotterdam Study

We included 895 T1-weighted scans (median age = 66.4, interquartile range (IQR)
= 22.7, 504 women) from the population-based Rotterdam Study, a prospective
longitudinal study among community-dwelling subjects aged 45 years and over.36

Scans were randomly selected from the study such that the age at time of the scan
was uniformly distributed within a range of 45-95 years. All brain scans were
acquired on a single 1.5-Tesla MRI system (GE Healthcare, US)36. In total, 225 of
the 895 participants were APOE ε4 carriers (25.1%).

Alzheimer's Disease Neuroimaging Initiative

We included 430 (median age = 74.1, IQR = 7.5, 217 women) baseline 3D T1-
weighted MRI scans from healthy controls from ADNI. ADNI is a longitudinal
multicenter study designed to develop clinical, imaging, genetic, and biochemical
biomarkers for the early detection and tracking of AD (adni.loni.usc.edu, for up-to-
date information, see www.adni-info.org). With the ADNI data set being the smallest
cross-sectional data set of the three cohorts, no further selection based on age was
performed, resulting in an age range between 55 and 90 years. Participants were
scanned on a 1.5- (n = 231, 53.7%) or 3-Tesla (n = 199, 46.3%) MRI system from
GE Medical (n = 162), Philips (n = 71), or Siemens (n = 197). In total, 114 of the 430
participants were APOE ε4 carriers (26.5%).

United Kingdom Biobank

We included 876 (median age = 55.0, IQR = 15.0, 428 women) 3D T1-weighted
scans from UKBB, all scanned with a 3-Tesla MRI system (Siemens Healthcare,
UK). Scans were randomly selected from the study such that the age at time of the
scan was uniformly distributed within a range of 40-70 years. UKBB is a prospective
resource gathering extensive questionnaires, physical and cognitive measures, and
biological samples in a cohort of 500,000 participants.305 In total, 238 of the 876
participants were APOE ε4 carriers (27.2%).

Patient data for subject-specific comparison

We assessed 3D T1-weighted scans from participants with MCI and AD from the
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Rotterdam Study and ADNI database and a sample of the APOE ε4 allele carriers
from the healthy participants from the three reference populations, to evaluate
whether subject-specific percentile estimations of different participant groups
(APOE ε4 allele carriership, MCI or AD) depend on the chosen reference
population. Furthermore, as an independent patient data set, we included MCI and
AD cases from the Alzheimer Center Erasmus MC.

AD and MCI cases from the Rotterdam Study and ADNI

From the Rotterdam Study, 3D T1-weighted scans were selected from study
participants with MCI (n = 41, age = 72 ± 6.4, 22 women) and prevalent AD (n = 45,
age = 81.9 ± 4.6, 25 women) at time of the scan. From the ADNI data set, we selected
the baseline 3D T1-weighted scan from patients with MCI (n = 50, age = 75.6 ± 7.0,
19 women) and patients with AD (n = 50, age = 75.1 ± 7.7, 28 women).

AD and MCI cases from the Alzheimer Center Erasmus MC

Scans from patients with MCI and AD from the Alzheimer Center Erasmus MC,
Rotterdam, The Netherlands, were used as an independent set. Use of clinical data
from the Alzheimer Center for research purposes was approved by the local medical
ethical committee. Informed consent was obtained from all patients. We used 19 3D
T1-weighted scans from patients with MCI (8 women, age = 69.4 ± 5.6) and 43 3D
T1-weighted scans from patients with AD (15 women, age=66.8 ± 9.6) who visited
the Alzheimer Center Erasmus MC between 2011 and 2016. All patient data were
acquired on a single 1.5T MRI system (GE Healthcare, US).

Participant groups

In the rest of the article, the term “participant groups” will be used to describe the
different subgroups on which the analyses are performed. The participant groups
consist of the following:

• Healthy: healthy participants from the three reference populations (Ntotal = 2201,
Rotterdam Study: 895, ADNI: 430, UKBB: 876).

• APOE ε4 carriers: Healthy participants from the three reference populations who carry
one or two APOE ε4 allele(s) (Ntotal = 158, Rotterdam Study: 47, ADNI: 61, UKBB: 50).

• MCI: participants from the Rotterdam Study and ADNI data set with MCI (Ntotal = 91,
Rotterdam Study: 41, ADNI: 50).

• AD: participants from the Rotterdam Study and ADNI data set with AD (Ntotal = 95,
Rotterdam Study: 45, ADNI: 50).

• MCI AC: patients with MCI who visited the Alzheimer Center (Ntotal = 19).

• ADAC: patients with AD who visited the Alzheimer Center (Ntotal = 43).
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Methods

Segmentation of subcortical structures on 3D T1-weighted data

This work is based on an MBS as described by Wenzel et al.304, utilizing a shape-
constrained deformable surface model for segmentation of subcortical brain
structures from T1-weighted MRI. Adaptation of subcortical brain surfaces is
performed stepwise, starting with global rigid and affine adaptation and followed by
multi-affine and fully deformable adaptation. In each step, a weighted sum of
internal and external energy is minimized. Here, internal energy relates to deviations
from a shape/point distribution model of a training data set. The external energy
component is based on the triangle-specific spatial distance to a target point along its
normal. Target points are estimated with boundary detector functions that have been
trained via a simulated search on the same training data set. For the used version of
MBS, the training data set included 96 manually delineated 3T scans, equally
distributed between patients with AD and healthy controls between ages 50 and 90
year as well as three device manufacturers (Philips, Siemens, and GE). The
segmentation software is optionally available as part of the IntelliSpace Discovery
workstation for data analytics in medical imaging.

Percentile curve fitting

For fitting of percentile curves for each subcortical volume in each of the three
normative cohorts, we used the lambda-mu-sigma (LMS) method.226 The LMS
method can deal with skewed distributions and results in smooth percentile curves.
The assumption of the LMS method is that the data are standard normally distributed
after applying the Yeo-Johnson transformation, which is an extension of the Box-
Cox transformation.226 This method estimates the λ-parameter of the Yeo-Johnson
transformation306 (L), the median (M), and coefficient of variation (S) for the
appropriate subcortical structure volume at each age. With the parameters L, M, and
S, percentiles can be computed at each age to obtain a smooth curve. The smoothness
of the fitted curves is influenced by the degrees of freedom δ, a user-defined
parameter. In our experiments, we set the smoothness parameter δ to a value of 2 and
we utilized the R-package VGAM307 for the percentile curve fitting. The volume of
a brain region may also be influenced by other covariates than age, for example, sex
and head size. Including a covariate in the LMS model results in an age-dependent
correction for the confounder. We therefore included sex in the LMS model as an
confounder, which allows different percentile curves for men and women. To ensure
an head size correction independent of age, head size was regressed out before fitting
the LMS models. The precision of the estimated percentile curves depends on the
number of data points in the appropriate age range. If the data are nonuniformly
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distributed over age, it could be that the curve estimation is not precise in the part
where there are very few data points. To assess the precision of the fitted curves, we
used a bootstrapping procedure, by random sampling subjects with replacement and
re-estimating the percentile curves. A distribution of possible curves was collected,
from which confidence intervals were estimated.308

Percentile curves were fit on the Rotterdam Study, UKBB, and ADNI reference
populations separately for the subcortical volumes of the hippocampus, amygdala,
putamen, thalamus, caudate and nucleus accumbens, and globus pallidus. With the
MBS, the volume of the caudate and the nucleus accumbens are combined into one
volume. Furthermore, for the analysis, the subcortical volumes were the sum of the
left and right volume. The MBS method does not segment the extraventricular
cerebrospinal fluid (CSF); therefore, the exact intracranial volume (i.e., the sum of
brain tissue and all CSF) was not available. To correct for head size, the “estimated
intracranial volume” was constructed as the sum of total brain volume and the
intraventricular CSF volume. An explorative comparison of the estimated
intracranial volume and the intracranial volume segmented previously in the
Rotterdam Study for other purposes with FreeSurfer 5.1 showed a good correlation
(0.93); therefore, the estimated intracranial volume was used to correct for head size.

Subject-specific comparison

To assess the influence of using a specific reference population on subject-specific
percentile values, scans from all three cohorts served as a joint test set to reduce a
cohort-specific bias caused by the different age range covered by each cohort. We
estimated the percentile value for every subcortical structure, for all participant
groups based on each of the three reference cohorts. This results in three percentile
values per subcortical volume for each participant. To assess differences in these
percentile values, the distributions of the percentile values based on the three
reference populations within the different participant groups are compared using a
Welch's two-sample t-test. In addition, the shift function, as described by Rousselet
and Wilcox et al.309, was used to describe the differences between the percentile
distributions based on the three different populations, to account for non-normally
distributed percentile distributions within the participant groups.

Results
Table 1 shows the characteristics of the different participant groups. Characteristics
of the participant groups per cohort are shown in Supplementary Table 1.
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Normative percentile curves

In Figure 1, the normative percentile curves based on the Rotterdam Study, ADNI,
and UKBB data sets are shown for the subcortical structure volumes: (A)
hippocampus, (B) amygdala, (C) thalamus, (D) putamen, (E) caudate and nucleus
accumbens, and (F) globus pallidus. Considering the percentile curves and the
corresponding confidence intervals around each curve, the percentile curves of
hippocampus volume and caudate and nucleus accumbens of the three normative
cohorts largely overlap, with a slightly higher volume in ADNI compared with
Rotterdam Study and UKBB. For the amygdala, the percentile curves show small
differences with higher volumes for UKBB, followed by ADNI and the lowest
volumes for Rotterdam Study. For the putamen, thalamus, and globus pallidus, the
ADNI and UKBB curves largely overlap, but the Rotterdam Study percentile curves
show a lower volume. Furthermore, for almost all subcortical structures, the
Rotterdam Study percentile curves show a larger decrease in volume over age than
ADNI; however, the steepness of the curves between Rotterdam Study and UKBB
seems comparable.
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Characteristic Healthy APOE ε4
carriers

MCI AD MCI AC ADAC

Age (y)a 63.6 (20.5) 68.8 (18.7) 74.5 (10.7) 79.2 (10.4) 70.1 (6.9) 66.0 (11.9)
Sex, women 1149 (0.52) 74 (0.47) 41 (0.45) 53 (0.56) 8 (0.42) 15 (0.35)
Hippocampus volume (mL) 6.3 (0.8) 6.3 (0.8) 5.7 (0.9) 4.7 (0.8) 6.0 (0.7) 5.3 (0.9)
Amygdala volume (mL) 1.9 (0.3) 1.9 (0.3) 1.7 (0.3) 1.4 (0.3) 1.9 (0.3) 1.6 (0.3)
Putamen volume (mL) 8.2 (1.0) 8.3 (1.0) 7.7 (1.0) 7.2 (0.8) 7.9 (1.0) 7.3 (0.8)
Thalamus volume (mL) 13.0 (1.5) 13.1 (1.4) 12.2 (1.5) 11.2 (1.0) 12.2 (1.3) 12.2 (1.7)
Caudate and
accumbensb volume (mL)

7.5 (0.9) 7.6 (0.9) 7.2 (0.9) 6.6 (0.8) 7.2 (1) 6.8 (1.4)

Globus pallidus volume
(mL)

2.8 (0.4) 2.8 (0.3) 2.7 (0.4) 2.5 (0.3) 2.8 (0.3) 2.7 (0.3)

Estimated intracranial
volume (mL)

1229.4
(127.2)

1245.0
(126.6)

1229.4
(144.8)

1137.7
(123.6)

1239.4
(137.9)

1212.2
(140.9)

Continuous variables are presented as means (standard deviations), and categorical variables as
numbers (percentages).
Key: APOE ε4 carriers, healthy participants from the three reference populations who carry one or two
APOE ε4 allele(s) (Ntotal = 158); AD AC, patients with AD who visited the Alzheimer Center (Ntotal =
43); AD, participants from the Rotterdam Study and ADNI data set with AD (Ntotal = 95); Healthy,
healthy participants from the three reference populations (Ntotal = 2201); MCI, participants from the
Rotterdam Study and ADNI data set with MCI (Ntotal = 91); MCI AC, patients with MCI who visited the
Alzheimer Center (Ntotal = 19).
aAge is presented as the median and interquartile range because of the non-normal distribution of age.
bCombined caudate and nucleus accumbens volume (mL).

Table 1. Characteristics of the participant groups.
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Subcortical
structure

Participant group RSref ADNIref UKBBref Difference
(p-value)

Ntotal
(RSS;ADNI;UKBB)

Hippocampus Healthy 0.51 (0.29) 0.51 (0.30) 0.51 (0.30) 1 2201 (895; 430; 876)
APOE ε4 carriers 0.51 (0.31) 0.51 (0.32) 0.51 (0.32) 1 158 (47; 61; 50)
MCI 0.34 (0.30) 0.33 (0.30) 0.34 (0.32) 1 91 (41; 50; 0)
AD 0.14 (0.21) 0.14 (0.21) 0.13 (0.21) 1 95 (45; 50; 0)

Amygdala Healthy 0.62 (0.30) 0.56 (0.31) 0.38 (0.29) <0.001a 2201 (895; 430; 876)
APOE ε4 carriers 0.60 (0.32) 0.55 (0.33) 0.38 (0.29) <0.001b 158 (47; 61; 50)
MCI 0.40 (0.31) 0.34 (0.30) 0.20 (0.24) <0.001b 91 (41; 50; 0)
AD 0.22 (0.27) 0.18 (0.24) 0.09 (0.16) <0.001c 95 (45; 50; 0)

Putamen Healthy 0.57 (0.28) 0.55 (0.30) 0.49 (0.30) <0.001b 2201 (895; 430; 876)

APOE ε4 carriers 0.60 (0.26) 0.58 (0.29) 0.52 (0.29) 0.39 158 (47; 61; 50)

MCI 0.51 (0.25) 0.47 (0.28) 0.46 (0.27) 1 91 (41; 50; 0)

AD 0.48 (0.29) 0.43 (0.31) 0.50 (0.30) 1 95 (45; 50; 0)

Thalamus Healthy 0.56 (0.28) 0.61 (0.31) 0.52 (0.29) <0.001a 2201 (895; 430; 876)

APOE ε4 carriers 0.59 (0.27) 0.64 (0.29) 0.56 (0.28) 0.17 158 (47; 61; 50)

MCI 0.41 (0.29) 0.43 (0.32) 0.46 (0.29) 1 91 (41; 50; 0)

AD 0.42 (0.27) 0.39 (0.29) 0.51 (0.26) 0.028d 95 (45; 50; 0)

Caudate and
nucleus
accumbens

Healthy 0.51 (0.28) 0.53 (0.30) 0.53 (0.29) 1 2201 (895; 430; 876)

APOE ε4 carriers 0.55 (0.26) 0.57 (0.28) 0.57 (0.28) 1 158 (47; 61; 50)

MCI 0.45 (0.28) 0.45 (0.30) 0.50 (0.30) 1 91 (41; 50; 0)

AD 0.38 (0.27) 0.38 (0.29) 0.47 (0.30) 0.54 95 (45; 50; 0)

Globus
Pallidus

Healthy 0.66 (0.28) 0.42 (0.32) 0.40 (0.30) <0.001e 2201 (895; 430; 876)

APOE ε4 carriers 0.7 (0.26) 0.47 (0.32) 0.46 (0.31) <0.001e 158 (47; 61; 50)

MCI 0.67 (0.25) 0.40 (0.30) 0.41 (0.28) <0.001e 91 (41; 50; 0)
AD 0.61 (0.30) 0.36 (0.31) 0.39 (0.30) <0.001e 95 (45; 50; 0)

Mean and standard deviation of the percentiles of the different participant groups (healthy participants, APOE ε4
carriers, participants with MCI, and participants with AD) based on the reference curves of each of the three
normative cohorts (RSref, ADNIref, and UKBBref).
Difference: smallest p-value of the paired t-tests; Ntotal: sample size of the participant groups.
Key: RS, Rotterdam Study; UKBB, United Kingdom Biobank; ADNI, Alzheimer's Disease Neuroimaging
Initiative; APOE ε4 carriers, healthy participants from the three reference populations who carry one or two
APOE ε4 allele(s); AD, participants from the Rotterdam Study and ADNI data set with AD; AD AC, patients with
AD who visited the Alzheimer Center; Healthy, healthy participants from the three reference populations; MCI,
participants from the Rotterdam Study and ADNI data set with MCI; MCI AC, patients with MCI who visited the
Alzheimer Center.
apercentile values based on the three normative cohorts are all significantly different from each other.
bpercentile values based on UKBB data are significantly different from those based on the other cohorts.
cpercentile values based on Rotterdam Study data are significantly different from those based on the UKBB data.
dpercentile values based on ADNI data are significantly different from those based on the UKBB data.
epercentile values based on Rotterdam Study data are significantly different from those based on the other cohorts.

Table 2. Comparison of percentile values of the participant groups based on each of
the three cohorts as reference curves.



Subject-specific comparison

In Table 2, the average percentile values and standard deviations are shown for the
different participant groups when based on each of the three normative cohorts. In
general, differences shown in the percentile curves in Figure 1 result in significant
differences in the percentile distributions. For hippocampus and caudate volume,
there are no significant differences in using the percentile curves from the Rotterdam
Study, ADNI, or UKBB for any of the different participant groups. For the volumes
of the putamen, there were significant differences in the percentiles within the
healthy participants. Yet, for the APOE ε4 carriers, patients with MCI and AD, these
differences were not significant. For the volumes of the thalamus, both the
percentiles of the healthy participants and the patients with AD were statistically
significant.

For the amygdala volume, the percentile values based on the three cohorts were all
significantly different. However, for the APOE ε4 carriers, MCI and AD cases, only
the percentile values based on UKBB were significantly lower than the other
reference cohorts. For the globus pallidus, there was a significantly higher percentile
value based on the Rotterdam Study data versus the other two cohorts, which is a
reflection of the significantly lower percentile curves for the Rotterdam Study, as
shown in Figure 1.

In Supplemental Figure 2, the results from the shift-function analyses are shown, for
the four different participant groups. The results show overall a straight line for all
participant groups, indicating a fixed percentile difference when comparing the
percentiles based on two different populations, which is independent of the
percentile value itself. The exceptions are the comparison of amygdala percentiles
based on UKBB compared with those based on the Rotterdam Study and ADNI.
Here, a higher percentile value is related to a larger percentile difference. The same
holds for the globus pallidus percentile based on the Rotterdam Study compared
with ADNI and UKBB.

Finally, in Table 3, the mean and standard deviation of the estimated percentiles for
the participants with AD and MCI from the Alzheimer Center are shown. Within this
sample, there was only a significant difference for the globus pallidus volume in the
patients with AD. Other percentile estimations in these groups did not differ
depending on the reference curves applied.
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Discussion
In this study, we calculated normative reference curves for subcortical structure
volumes from reference populations that were either derived from population-based
studies or from normal controls of a case-control study. We used a segmentation
method for which previous experiments on data from both 3T and 1.5T for different
scanners indicate good agreement with respect to independent ground truth
segmentations, regardless of the field strength or vendor. We found that for most
subcortical structures, the percentile curves of the subcortical structures largely
overlap. This indicates only small differences between the subcortical volumes of
these reference populations, regardless of differences in vendors, field strength,
acquisition, and population differences. When estimating the percentile values for
various participant groups that may be evaluated in a clinical setting (APOE ε4
carriers, and patients with MCI and AD), the choice of reference population did not
influence the percentile distribution significantly, except for the smallest subcortical
structures: amygdala and globus pallidus.
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Subcortical structure Participants Average percentile (SD) Difference N
RSref ADNIref UKBBref

Hippocampus MCI 0.36 (0.32) 0.36 (0.33) 0.38 (0.33) 1 19
AD 0.16 (0.23) 0.16 (0.22) 0.16 (0.22) 1 43

Amygdala MCI 0.58 (0.36) 0.53 (0.36) 0.39 (0.33) 1 19
AD 0.27 (0.3) 0.22 (0.28) 0.14 (0.24) 0.5 43

Putamen MCI 0.49 (0.3) 0.46 (0.32) 0.42 (0.31) 1 19
AD 0.3 (0.23) 0.26 (0.24) 0.23 (0.23) 1 43

Thalamus MCI 0.33 (0.23) 0.34 (0.26) 0.31 (0.22) 1 19
AD 0.34 (0.29) 0.35 (0.32) 0.31 (0.3) 1 43

Caudate and nucleus accumbens MCI 0.41 (0.3) 0.41 (0.31) 0.43 (0.3) 1 19
AD 0.33 (0.33) 0.34 (0.34) 0.35 (0.34) 1 43

Globus pallidus MCI 0.67 (0.24) 0.4 (0.32) 0.4 (0.3) 0.08 19
AD 0.66 (0.31) 0.44 (0.33) 0.43 (0.32) 0.023a 43

Difference: smallest p-value of the paired t-tests; Ntotal: sample size of the participant groups; N: sample
size of the Alzheimer Center set.
Key: AD, Alzheimer's disease; MCI, mild cognitive impairment; RS, Rotterdam Study; UKBB, United
Kingdom Biobank; ADNI, Alzheimer's Disease Neuroimaging Initiative.
apercentile values based on Rotterdam Study data are significantly different from those based on other
cohorts.

Table 3. Comparison of percentile values of the participants with MCI and AD from
the Alzheimer Center, based on the reference curves from each of the three
normative cohorts (RSref, ADNIref, and UKBBref)



In particular, the hippocampus percentile curve was very robust across the
participant groups. This indicates that individual diagnostic assessment in a clinical
setting, based on subcortical volume information, may not be biased by the use of a
specific reference population.

Strengths and limitations

A major strength of this study is the use of a single segmentation tool on MRI scans
from various different large reference populations, giving a comprehensive overview
of subcortical volumes in aging in these populations. Another strength of the study
is the availability of scans from patient groups (MCI and AD) from the Rotterdam
Study and ADNI, as well as a patient population independent from the reference
populations, that is, the Alzheimer Center data. There are a number of limitations
associated with this study. First, a limitation concerning the volume segmentation
method used in this study is the lack of segmentation of extraventricular
cerebrospinal fluid because of which the intracranial volume estimated in this study
gives an underestimation of the true intracranial volume (or head size). This
underestimation may lead to an underestimation of the atrophy effect in aging, when
the changes in ventricular cerebrospinal fluid are not representative of the
extraventricular cerebrospinal fluid changes in aging. Yet, a sensitivity analysis
within the Rotterdam Study population in whom both estimated intracranial volume
and exact intracranial volume were available showed these effects to be negligible.
Second, the LMS method used in this study for the estimation of the percentile
curves results in smooth percentile curves in aging, which can deal with skewed
distributions. Within this study, other methods to estimate percentile curves would
also have been suitable, assuming that the subcortical volumes over age are normally
distributed. Within the context of this study, we believe that the impact of the choice
of the percentile curve estimation method on the differences between populations is
minimal, as long as the same percentile curve fitting method is the same for the
different reference populations. Third, a limitation concerning the generalizability of
these percentile curves is the fact that the vast majority of the healthy study
participants and the participant groups are Caucasian. Therefore, differences in
percentile curves which could result from differences in ethnicity of study
populations are not assessed in this study. Fourth, in this study, we are not able to
determine the exact source of differences in the subcortical volumes between
reference populations because of the variation in vendor, field strength, and
acquisition used in the different populations. However, we are able to demonstrate
the magnitude of these differences, indicating the impact of these differences on
individual patient assessment in an everyday clinical setting. Fifth, the lack of
overlap of the complete age range of all three reference populations is a limitation of
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this study, making comparison of the reference curves more difficult. Given the
important differences in age ranges, comparison of percentile volumes of healthy
participants was performed on the combined healthy participants of the Rotterdam
Study, ADNI, and UKBB, although the percentile curves itself were fitted on these
same reference populations. Ideally, separate healthy participants from the same
reference populations, which are not included in the percentile curve fitting, would
be used to test percentile value differences for the different reference populations.
Furthermore, this study was limited to the subcortical structure volumes including
hippocampus volume, whereas in a clinical setting, other (cortical) brain volumes
would be also of importance. The current choice for subcortical volumes was driven
on the one hand by an increasing scientific interest into subcortical volumes in
neurological diseases (including neurodegenerative diseases in older age) and on the
other hand because of the availability of a proven robust segmentation algorithm,
which performs population- and vendor-independent, eliminating potential sources
of noise. Yet, a logical next step would be to explore the dependence of cortical
segmentation algorithms on the choice of reference population. Finally, in this study,
the patient population on which the effect of different reference populations were
estimated consisted of only patients with AD or participants at higher risk of AD.
Next step would be to evaluate reference curves of a broad spectrum of brain
structures based on different reference populations and the effect of these differences
on diagnostic assessments in different neurological diseases and neuropsychiatric
disorders.

Differences between reference populations

In general, we found slightly lower reference volumes based on the scans from the
Rotterdam Study compared with the ADNI and UKBB reference curves. A possible
explanation for these differences is that the Rotterdam Study population is a
population-based cohort, whereas ADNI has a case-control design. Within the
healthy set of the Rotterdam Study, participants with MCI or AD at time of the scan
were excluded, whereas the ADNI controls are cognitively normal with no memory
complaints and no significant cognitive impairment. Therefore, the control subjects
from ADNI are expected to be healthier than the Rotterdam Study population. On the
other hand, Rotterdam Study percentile curves also show a slightly lower value than
the UKBB percentile curves, which is a population-based cohort as well. This may
be due to a lower response rate in the UKBB, with the possibility of healthy selection
bias. Furthermore, a slight increase in subcortical volume has been seen in the ADNI
reference curves from age 80 to 85. A possible explanation might be that with
increasing age (especially from age 80 and older), the ADNI controls become
proportionately healthier than control subjects from a population-based study
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because of the fact that the higher a subject's age, the more likely he or she is to have
memory complaints. This could be interpreted as an increasing healthy selection bias
with age. Another possible explanation for differences between reference
populations could be the fact that scans from both the Rotterdam Study and UKBB
have each been acquired on the same vendor (with only a single scanner for the
Rotterdam Study), whereas scans in the ADNI database were collected from
different scanners, field strengths, and scanner types. Therefore, characteristics of a
single scanner or vendor with an impact on volumetric segmentation might be more
dominant in Rotterdam Study and UKBB curves. This effect might have a larger
impact on small structures as well as such with subtle contrast boundaries like
amygdala and globus pallidus, explaining more pronounced differences between
their corresponding percentile curves and additionally the larger percentile
differences with higher percentile volumes in these small structures. The study by
Potvin et al.286 that created normative curves for subcortical structures and evaluated
the effects of scanner characteristics also showed that for the amygdala structure
volume, the effects of scanner characteristics were modest, whereas in the most other
structures, the effect was minor compared to age, sex, and intracranial volume.

Summary and conclusion

Overall, we found that the percentile curves of the subcortical structure based on
three different reference populations largely overlap, indicating only small
differences between the subcortical volumes of these populations, regardless of
differences in vendors, field strength, acquisition, and population differences.
Therefore, we conclude that the subcortical volume data of these three cohorts are
interchangeable, suggesting more flexibility in clinical implementation.
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Data-driven disease progression models have provided important insight into
the timeline of brain changes in AD phenotypes. However, their utility in
predicting the progression of pre-symptomatic AD in a population-based
setting has not yet been investigated. In this study, we investigated if the disease
timelines constructed in a case-controlled setting, with subjects stratified
according to APOE status, are generalizable to a population-based cohort, and
if progression along these disease timelines is predictive of AD. Seven
volumetric biomarkers derived from structural MRI were considered. We
estimated APOE-specific disease timelines of changes in these biomarkers
using a recently proposed method called co-initialized discriminative event-
based modeling (co-init DEBM). This method can also estimate a disease stage
for new subjects by calculating their position along the disease timelines. The
model was trained and cross-validated on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset, and tested on the population-based
Rotterdam Study (RS) cohort. We compared the diagnostic and prognostic
value of the disease stage in the two cohorts. Furthermore, we investigated if
the rate of change of disease stage in RS participants with longitudinal MRI
data was predictive of AD. In ADNI, the estimated disease timelines for ε4 non-
carriers and carriers were found to be significantly different from one another
(p<0.001). The estimate disease stage along the respective timelines
distinguished AD subjects from controls with an AUC of 0.83 in both APOE ε4
non-carriers and carriers. In the RS cohort, we obtained an AUC of 0.83 and
0.85 in ε4 non-carriers and carriers, respectively. Progression along the disease
timelines as estimated by the rate of change of disease stage showed a
significant difference (p<0.005) for subjects with pre-symptomatic AD as
compared to the general aging population in RS. It distinguished pre-
symptomatic AD subjects with an AUC of 0.81 in APOE ε4 non-carriers and
0.88 in carriers, which was better than any individual volumetric biomarker, or
its rate of change, could achieve. Our results suggest that co-init DEBM trained
on case-controlled data is generalizable to a population-based cohort setting
and that progression along the disease timelines is predictive of the
development of AD in the general population. We expect that this approach can
help to identify at-risk individuals from the general population for targeted
clinical trials as well as to provide biomarker based objective assessment in
such trials.



Introduction
Alzheimer’s disease (AD) is a chronic neurodegenerative disease that affects
roughly 3% of the world’s elderly population (above 60 years old).310 A major
genetic risk factor for AD is the presence of ε4 allele of APOE.311 Furthermore,
APOE ε4 has also been shown to affect the clinical312,313 and biological phenotypes
of AD314, making it a key factor in understanding the pathophysiology of AD.

Neuroimaging biomarkers play an important role in disentangling these
phenotypes.191,315 They could also play an important role in finding disease
modifying treatments.316 There has been evidence that selection of the study
population at its pre-symptomatic stage is also crucial for the success of potential
modifying treatments for AD.317,318 Hence there is a crucial need for a way to
objectively assess the progression of pre-symptomatic AD (or lack thereof).

Biomarkers extracted from neuroimaging data in combination with machine
learning approaches have been shown to objectively assess the progression of AD in
research cohorts319 as well as in clinical cohorts320. However, machine learning
approaches are not explainable by default and the lack of transparency in such
approaches could hinder clinical decision making321.

Disease progression models are data-driven approaches that are interpretable by
design and can thus aid not only in predicting AD but also in explaining the decision
and facilitating transparency and trust.322 In recent years, many disease progression
models have emerged to provide insight into neurodegenerative diseases such as
AD.323,324 Such insights have also been shown to aid in objective assessment of AD
progression.325 An example of such a model is the discriminative event-based model
(DEBM)326, which estimates a timeline of AD related biomarker abnormality events
in a data-driven way. This model was recently extended further to identify APOE
genotype-specific differences in AD biomarker progression, where the biomarkers,
including volumetric measures obtained from MRI, were found to progress along
different timelines depending on APOE status.327 However, the generalizability of
such models to population-based cohorts and their utility in predicting the
progression of pre-symptomatic AD in a population-based setting have not yet been
investigated.

In this work, we investigate if i) APOE-specific disease timelines constructed in a
case-controlled setting are generalizable to a population-based cohort, and ii) if
progression along these disease timelines is predictive of AD. For constucting the
APOE-specific disease timelines, we use a recently developed approach called co-
initialized (co-init) DEBM327 meant for obtaining disease timelines in stratified

4

167



cross-sectional datasets. We demonstrate the potential of the method’s fine-grained
disease stage estimation in predicting the subjects with pre-symptomatic AD in the
general population.

Methods
We first describe the inclusion criteria for participants and the method for obtaining
the volumetric biomarkers in the case-controlled Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset and the population-based Rotterdam study
(RS) dataset. This is followed by the description of co-init DEBM used to construct
APOE-specific disease timelines of volumetric biomarkers from baseline scans of
the participants in the ADNI. We validated the disease timelines constructed on
ADNI by assessing their generalizability to the population-based RS cohort, and by
predicting the participants at-risk of becoming symptomatic in the RS cohort.

Participants

ADNI

We considered the baseline measurements of 335 cognitively normal (CN), 565 non-
AD, 167 incident-AD and 223 AD participants (prevalent-AD) who had imaging
data available in ADNI1, ADNIGO and ADNI2 studies. The non-AD cases were
defined as ADNI participants who were either mild cognitively impaired (MCI) or
had subjective memory complaints at the time of the baseline MRI scan, and did not
develop AD within 3 years of follow-up. The incident-AD cases presented with MCI
at baseline but developed AD within 3 years. The prevalent-AD and incident-AD
subjects were defined by their clinical diagnosis of AD according to NINCDS-
ADRDA’s criteria for AD.328,329 Characteristics of the subjects and their volumetric
measures in the ADNI dataset included in our study are shown in Table 1(a).

Rotterdam study

We considered participants from the population-based RS cohort, a prospective
longitudinal study among community-dwelling subjects aged 45 years and over.194

Participants were screened for dementia at baseline and at follow-up examinations
with the Mini-Mental State Examination and the Geriatric Mental Schedule organic
level. Those with a Mini-Mental State Examination score < 26 or Geriatric Mental
Schedule score > 0 underwent further investigation and informant interview,
including the Cambridge Examination for Mental Disorders of the Elderly. In
addition, the entire cohort was continuously under surveillance for dementia through
electronic linkage of the study database with medical records from general
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practitioners and the regional institute for outpatient mental health care. Available
information on cognitive testing and clinical neuroimaging was used when required
for diagnosis of dementia subtype. A consensus panel led by a consultant neurologist
established the final diagnosis of AD according to NINCDS-ADRDA criteria for
AD.

In this work, we included participants from the RS who had at least one MRI scan,
who completed cognitive testing, and were interviewed for the presence of
subjective cognitive complaints at the time of the MRI. The included participants
were categorized into 4 groups: participants that were cognitively normal at the time
of the scan (CN), participants that had subjective memory complaints and/or
objective cognitive impairment330, but who did not develop AD at follow-up (non-
AD), participants with AD at the time of the scan (prevalent-AD) and participants
who developed AD after the MRI scan (incident-AD). Unlike in ADNI, we did not
set a threshold of conversion within 3 years to be included as an incident-AD
participant, since we wanted to assess the utility of our method in monitoring the
progression of both pre-clinical and prodromal AD subjects. Participants with
clinical stroke were excluded.

In our experiments, we used two subsets of the RS cohort: the generalizibility set and
the prediction set. The generalizibility set consisted of the last MRI scan available
for each partipant in the RS cohort. This subset consisted of 998 CN, 2710 non-AD,
97 incident-AD, and 25 prevalent-AD cases and were used for experiments
validating the generalizability of the APOE-specific disease timelines constructed
using co-init DEBM. The characteristics of the subjects in this subset are shown in
Table 1(b). The prediction set consisted of the last two MRI scans available for each
participant, which were used to assess the progression (or lack thereof) of pre-
symptomatic AD in the participants. This subset consisted of 183 CN, 852 non-AD
and 31 incident-AD cases. For the incident-AD cases, both the included scans were
performed before the AD diagnosis. Participants with prevalent-AD were excluded
in this subset. The characteristics of the subjects in this subset are shown in Table
1(c). A scatter plot illustrating the longitudinal sampling in this prediction set is
shown in Figure 1.

MRIAcquisition and imaging biomarker extraction

The imaging biomarkers used in this study were estimated from T1-weighted (T1w)
MRI scans. ADNI participants were scanned on a 1.5T (N = 497) or a 3T (N = 739)
MRI system from GE, Philips, or Siemens, using magnetization prepared - rapid
gradient echo (MP-RAGE) sequence (voxel size: 1.0 × 1.0 × 1.0 mm3). RS
participants were scanned on a single 1.5T MRI system from GE, using gradient
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recalled echo (GRE) sequence (voxel size: 0.49 × 0.49 × 1.6 mm3 ). Details of the
MRI acquisition protocol can be found in Jack et al.331 (ADNI) and Ikram et al.37

(RS). The MRI scans were analyzed with FreeSurfer software v6.0 cross-sectional
stream (http://surfer.nmr.mgh.harvard.edu). Outputs were visually checked for the
ADNI dataset. In the RS dataset, an automated quality metric was used to exclude
scans with insufficient quality, which was visually verified in a randomly selected
subset of both selected and rejected scans.332

The selected imaging markers were the same markers as that of Archetti et al.333,
namely volumetric measures of: total brain, ventricles, hippocampus, precuneus,
middle temporal gyrus, fusiform gyrus and entorhinal cortex. The volumes were
defined as the summed volumes of the structure in the left and right hemisphere. To
take into account the confounding effects of age, sex, and intracranial volume, linear
regressions were performed before constructing the disease timelines. The
volumetric measures of CN subjects in ADNI were used to regress against age, sex
and intracranial volume to estimate their confounding effects parameterized by their
respective slopes and intercepts. These estimates were used for confounding factor
correction in the remaining subjects in ADNI as well as in the RS cohort. The
resultant volumetric measures will be referred to as biomarkers in the remainder of
the manuscript.

Construction of APOE-specific disease timelines using co-init
DEBM

The co-init DEBM model introduced by Venkatraghavan et al.327, constructs
genotype-specific AD related disease timelines of biomarker changes, based on
cross-sectional datasets. Such an estimation from cross-sectional data is feasible
because, in a cohort consisting of subjects encompassing a wide spectrum of
severity, early biomarkers have a higher prevalence of abnormal biomarker values
as compared to biomarkers that become abnormal later in the disease timeline. The
co-init DEBM model estimates this timeline without strictly considering the
diagnostic labels of the subjects. The model uses a coupled mixture model to jointly
fit normal and abnormal distributions in the dataset stratified by (APOE) genotypes.
The model assumes that the normal and abnormal biomarker distributions in the
different genotypes can be approximately represented by Gaussians. It also assumes
that the different genotypes’ abnormal (and normal) biomarker distributions are
close to each other.

After the estimation of the normal and abnormal biomarker distributions, the model
computes the probability of abnormality of each biomarker for each subject in the
training dataset. Based on the assumption that a biomarker that becomes abnormal
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earlier in the disease timeline would be more abnormal than the biomarker that
becomes abnormal later, it estimates a subject-specific ordering of biomarker
changes in each subject of the dataset. A generalized Mallows model is used to
average the subject-specific biomarker ordering over the subjects within each
genotypic group of the training set, to construct average disease timeline for APOE
ε4 non-carriers and carriers. Along with the sequence of the biomarker abnormality
events, the model also estimates the relative positioning of such events with respect
to each other (event-centers). Absolute magnitudes for these event-centers are
irrelevant as they only convey relative (temporal) distances and in this study, they
were normalized such that the first event and the last event coincided at a value of
0.1 and 0.9 respectively.

To construct the disease timelines, the co-init DEBM was trained on CN, incident-
AD, and prevalent-AD subjects from ADNI. The non-AD subjects in ADNI were
excluded for training the model, to reduce the chances of disorders unrelated to AD
affecting the estimated timelines. The variance in the estimated disease timeline was
computed using 100 independent bootstrap samples. In order to evaluate if the
estimated orderings in APOE ε4 non-carriers and carriers were significantly different
from one another, we used permutation testing and estimated the distribution of the
Kendall’s Tau distance under the null hypothesis. To compute this distribution, we
generated 1,000 random permutations of the two groups. We then computed the one-
sided p-values for the actual Kendall’s Tau distances between the orderings of the
two groups, calculated as the proportion of sampled permutations where the distance
was greater than or equal to the actual distance.

Estimating APOE-specific disease stages

After training the co-init DEBM model, the constructed APOE-specific disease
timelines were used to estimate the disease stage at multiple timepoints for subjects
of the RS cohort. For estimating the disease stages of ADNI subjects, we used a 10-
fold cross validation. The training set was used for constructing the disease timelines
and the disease stages were estimated in the test set, including the non-AD subjects
excluded in the training phase. Disease stage quantifies the severity of the disease in
a subject by positioning them along the pre-constructed disease timelines and is
normalized between 0 and 1. The estimated disease stages were used in two sets of
experiments.
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Experiment 1:Assessing the generalizability of co-init DEBM from ADNI to RS

In this experiment, we tested the generalizability of the co-init DEBM model trained
on ADNI by evaluating the diagnostic and prognostic value of its predicted disease
stages in the RS cohort. First we performed a visual assessment by constructing
normalized histograms of the estimated APOE-specific disease stages for the
different diagnostic classes in ADNI and the generalizability set of the RS cohort.

Complementing this visual analysis, for assessing the diagnostic value we used the
estimated disease stages to distinguish prevalent-AD from two different reference
groups in ADNI and in the generalizability set of the RS cohort. First, only the CN
subjects were included in the reference group. To emulate a reference group of
participants more representative of the general aging population than the CN group,
we used a combined set of CN and non-AD subjects as the second reference group.
We computed the area under the receiver operating curve (AUC) for distinguishing
the diagnostic classes, and compared the AUCs obtained in ADNI and RS. The
confidence intervals of these AUCs were measured using bootstrap resampling while
stratifying the diagnostic classes to maintain their relative proportions. For assessing
the prognostic value, we used the estimated disease stages to distinguish incident-
AD from the aforementioned two reference groups in ADNI and in the
generalizability set of RS cohort. We computed the AUCs and their confidence
intervals for distinguishing these diagnostic classes and compared values obtained in
ADNI and RS.

To compare the generalizability of a model that stratifies based on APOE carriership,
with that of a model that does not, we repeated the experiment described above using
disease timeline estimated in ADNI subjects, without stratifying for APOE.
Furthermore, we computed the correlation of the estimated disease stages with time
to dementia diagnosis for incident-AD subjects in ADNI as well as in RS. Lastly, we
computed the Spearman correlation of the estimated disease stages with MMSE for
subjects in ADNI as well as in RS.

Experiment 2: Predicting AD based on longitudinal data in the RS cohort

In this experiment, we assess if the evolution of the disease stages derived from
longitudinal neuroimaging data is predictive of AD in the prediction set of the RS
cohort. This experiment is further divided into three parts. In the first part, we build
longitudinal trajectories of the disease stages and observe the differences in CN, non-
AD and incident-AD subjects. In the second part, we assess the prognostic value of
the rate of change of disease stages. Lastly, we assess the marginal utility of the
follow-up scans in AD prognostication.
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Exp. 2.1: We used the disease stages obtained in the prediction set of the RS cohort
for building the trajectories of disease stages in the two APOE ε4 based groups. The
trajectories were estimated using linear mixed models with random intercepts and
slopes. The time variable in these linear mixed models was follow-up time in years
since the first MRI of the subject. To allow different slopes for different diagnostic
classes, an interaction between follow-up time and the diagnosis was integrated in
the model. Covariates that were accounted for in the model were sex, age at the time
of the first MRI, and the interaction of age and follow-up time to allow slope
differences for different ages.

Exp. 2.2: We used the rate of change of disease stages (delta disease stage) in the
prediction set of the RS cohort to distinguish incident-AD from two different
reference groups. As in Experiment 1, the two reference groups selected were CN,
and a combined set of CN and non-AD subjects. We computed the AUCs and their
confidence intervals for distinguishing these diagnostic classes. For comparison, the
AUCs while using the rate of change of the volumetric measures (normalized to their
respective intracranial volumes) for distinguishing the same two classes were
computed.

Exp. 2.3: Lastly, to evaluate the marginal utility of the follow-up scans for
identifying incident-AD subjects, we used the estimated disease stage at the last MRI
scan of the subjects in the prediction set of the RS cohort to distinguish incident-AD
from the aforementioned two different reference groups. We computed the AUCs
and their confidence intervals for distinguishing these diagnostic classes. As a
comparison, the AUCs based on participants’ age as well as of each individual
volumetric imaging biomarker were also computed.

Results
Figure 2 shows the APOE-specific disease timelines constructed for the ε4 non-
carriers and carriers in the ADNI dataset. It shows the centers of the biomarker
abnormality events along the timeline representing their relative positioning with
respect to each other. It can be seen that the disease timelines of APOE ε4 non-
carriers and carriers were quite different. The permutation testing further confirmed
that the disease timelines of ε4 non-carriers and carriers were indeed significantly
different (p < 0.001). Most noticeably, ventricular volume and total brain volume
were estimated as early biomarkers for APOE ε4 non-carriers, whereas hippocampal
volume and volume of the entorhinal cortex were estimated as early biomarkers for
APOE ε4 carriers. It can also be seen in Figure 2 that the uncertainty estimates in
APOE ε4 non-carriers were greater than in APOE ε4 carriers.
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A) ADNI dataset CN non-AD incident-AD prevalent-AD
Number of subjects 335 565 167 223
Number of women, % 174, 51.9 268, 47.4 68, 40.7 104, 46.6
Age (years) 74.3 ± 5.6 71.82 ± 7.2 73.1 ± 7.1 74.0 ± 7.9
Number of APOE ε4 carriers, % 92, 27.5 238, 42.1 121, 72.5 151, 67.7
Intracranial volume (ml) 1504.0 ± 155.8 1520.9 ± 152.8 1546.2 ± 180.2 1524.2 ± 183.9
Total brain volume (ml) 1030.7 ± 98.7 1043.3 ± 100.0 1017.7 ± 111.7 991.8 ± 114.1
Ventricle volume (ml) 38.4 ± 18.1 41.0 ± 21.3 49.1 ± 23.9 51.4 ± 21.9
Hippocampus volume (ml) 7.3 ± 0.9 7.1 ± 1.0 6.3 ± 1.0 6.0 ± 1.0
Precuneus volume (ml) 16.7 ± 2.2 17.4 ± 2.4 16.2 ± 2.6 15.4 ± 2.5
Middle temporal gyrus volume (ml) 20.4 ± 2.7 20.4 ± 2.7 18.5 ± 2.9 17.6 ± 3.0
Fusiform gyrus volume (ml) 17.5 ± 2.1 17.6 ± 2.2 16.3 ± 2.4 15.5 ± 2.4
Entorhinal cortex volume (ml) 4.0 ± 0.7 3.9 ± 0.8 3.4 ± 0.8 3.2 ± 0.8
Time before AD diagnosis (years)* 1.4 ± 0.7

B) RS dataset - generalizability set CN non-AD incident-AD prevalent-AD
Number of subjects 998 2710 97 25
Number of women, % 500, 50.1 1200, 44.3 39, 40.2 10, 40.0
Age (years) 67.4 ± 8.3 70.9 ± 9.3 79.6 ± 5.7 80.2 ± 6.3
Number of APOE ε4 carriers, % 255, 25.6 745, 27.5 45, 46.4 11, 44.0
Intracranial volume (ml) 1512.3 ± 157.6 1475.8 ± 155.3 1437.5 ± 156.6 1403.0 ± 163.9
Total brain volume (ml) 1050.3 ± 107.5 1012.6 ± 105.6 936.6 ± 94.9 884.5 ± 105.0
Ventricle volume (ml) 33.7 ± 17.3 36.5 ± 19.3 49.1 ± 21.1 59.9 ± 28.3
Hippocampus volume (ml) 7.9 ± 0.8 7.6 ± 0.8 6.7 ± 0.9 6.0 ± 1.0
Precuneus volume (ml) 18.2 ± 2.1 17.6 ± 2.0 16.8 ± 1.9 15.4 ± 2.2
Middle temporal gyrus volume (ml) 20.6 ± 2.7 19.9 ± 2.7 17.6 ± 2.5 16.2 ± 2.7
Fusiform gyrus volume (ml) 17.7 ± 2.2 17.2 ± 2.1 15.8 ± 2.0 14.5 ± 2.7
Entorhinal cortex volume (ml) 3.7 ± 0.6 3.6 ± 0.7 3.1 ± 0.8 2.6 ± 0.7
Time before AD diagnosis (years)* 2.8 ± 2.3

C) RS dataset - prediction set CN non-AD incident-AD
Number of subjects 183 852 31
Number of women, % 95, 51.9 412, 48.4 10, 32.3
Age (years)* 73.3 ± 5.5 75.5 ± 6.4 78.4 ± 6.8
Follow-up time (years) 3.5 ± 1.3 3.5 ± 1.4 2.9 ± 0.9
Number of APOE ε4 carriers, % 39, 21.3 225, 26.4 13, 41.9
Intracranial volume (ml)* 1522.8 ± 156.6 1478.9 ± 156 1419.4 ± 126.9
Total brain volume (ml)* 1038.7 ± 100.7 998.4 ± 98.3 926.6 ± 91.4
Ventricle volume (ml)* 39.7 ± 20.2 41.1 ± 21.6 44.9 ± 17
Hippocampus volume (ml)* 7.8 ± 0.8 7.4 ± 0.8 6.7 ± 0.9
Precuneus volume (ml)* 18.0 ± 2.0 17.5 ± 1.9 16.5 ± 1.8
Middle temporal gyrus volume (ml)* 20.3 ± 2.6 19.5 ± 2.4 17.5 ± 2.4
Fusiform gyrus volume (ml)* 17.5 ± 2.1 17.0 ± 2.1 15.6 ± 2.1
Entorhinal cortex volume (ml)* 3.7 ± 0.7 3.6 ± 0.7 3.0 ±0.6
Time before AD diagnosis (years)* 2.4 ± 1.8

Table 1. Characteristics of the A) ADNI dataset, B) the generalizability set of the RS
dataset, and C) the prediction set of the RS dataset. *Indicates values at last scan.



Experiment 1:Assessing the generalizability of co-init DEBM from ADNI to RS

The normalized histograms of the estimated APOE-specific disease stages for the
different diagnostic classes in ADNI and the generalizability set of RS are shown in
Figure 3. It can be seen that the distributions of the disease stages of the four
diagnostic classes in ADNI were largely similar to those in the generalizability set of
RS. The CN and non-AD subjects were positioned towards the left side of the
spectrum, whereas the prevalent-AD were positioned predominantly towards the
right. It can also be seen that for a proportion of prevalent-AD subjects in the APOE
ε4 non-carrier group, the model had estimated a low disease stage in both ADNI and
RS cohorts. A noticeable difference between ADNI and RS was that a substantial
proportion of incident-AD subjects in RS was positioned towards the left side of the
histograms in both APOE ε4 non-carriers and carriers.

The AUCs for distinguishing the different diagnostic classes using the estimated
disease stages are shown in Table 2, along with their confidence intervals. It can be

4

175

Figure 1. Longitudinal sampling in the prediction set of the RS dataset. The x-axis represents
the age of the participant at baseline and the y-axis represents time difference between the
baseline and follow-up scan. The plot on the top of the figure shows the kernel density
estimates of the age of the participants for the different diagnostic classes and the one on the
right shows the kernel density estimates of the follow-up time.



observed that the performance of the disease stages obtained using co-init DEBM in
distinguishing prevalent-AD from the set of CN and non-AD subjects in ADNI
(AUC = 0.83 for both APOE ε4 non-carriers and carriers) was comparable to that in
RS (AUC = 0.83 for APOE ε4 non-carriers and AUC = 0.85 for 4 carriers). It should
however be noted that the confidence intervals were larger in the RS cohort. It can
also be observed that incident-AD subjects were harder to distinguish than
prevalent-AD in the RS cohort (Co-init DEBM: AUC = 0.68 for ε4 non-carriers and
AUC = 0.62 for ε4 carriers), but not in ADNI (Co-init DEBM: AUC = 0.81 for ε4
non-carriers and AUC = 0.79 for ε4 carriers). It can also be seen in Table 2 that, while
AUCs in ADNI are comparable for both DEBM and Co-init DEBM and in APOE ε4
carriers in RS, the AUCs for distinguishing the different groups in RS APOE ε4 non-
carriers is higher for co-init DEBM.

Furthermore, the estimated disease stages showed a significant Pearson correlation
with time to diagnosis for APOE ε4 carrier incident-AD subjects in both ADNI (R =
0.31, p = 0.0006) and RS cohorts (R = 0.29, p = 0.04). However, the correlation was
found to be insignificant for APOE ε4 non-carrier incident-AD subjects in both
ADNI (R = 0.04, p = 0.8 ) and RS cohorts (R = 0.1, p = 0.4). Lastly, the obtained

Chapter 4.2 | Progression along APOE-specific data-driven temporal cascades

176

Cases No. of Subjects Co-init DEBMAUC DEBMAUC
Reference group ADNI

(NR,NC)
RS
(NR,NC)

ADNI RS ADNI RS

APOE ε4 non carriers
CN prevalent-

AD
243, 72 743, 14 0.86

(0.81-0.91)
0.85
(0.71-0.98)

0.85
(0.80-0.90)

0.79
(0.64-0.94)

CN + non-AD prevalent-
AD

570, 72 2708, 14 0.83
(0.78-0.88)

0.83
(0.70-0.97)

0.81
(0.76-0.86)

0.79
(0.64-0.94)

CN incident-
AD

243, 46 743, 52 0.83
(0.77-0.90)

0.70
(0.62-0.78)

0.83
(0.77-0.89)

0.63
(0.55-0.72)

CN + non-AD incident-
AD

570, 46 2708, 52 0.81
(0.74-0.88)

0.68
(0.60-0.75)

0.80
(0.73-0.86)

0.64
(0.55-0.72)

APOE ε4 carriers
CN prevalent-

AD
92, 151 255, 11 0.89

(0.85-0.94)
0.85
(0.74-0.96)

0.92
(0.87-0.96)

0.84
(0.71-0.97)

CN + non-AD prevalent-
AD

330, 151 1000, 11 0.83
(0.79-0.86)

0.85
(0.74-0.95)

0.83
(0.80-0.87)

0.85
(0.72-0.98)

CN incident-
AD

92, 121 255, 45 0.87
(0.82-0.92)

0.63
(0.54-0.72)

0.88
(0.83-0.93)

0.62
(0.52-0.72)

CN + non-AD incident-
AD

330, 121 1000, 45 0.79
(0.74-0.83)

0.62
(0.54-0.71)

0.79
(0.74-0.83)

0.62
(0.52-0.72)

Table 2. Generalizability assessment: The AUCs for distinguishing the different diagnostic
classes using the estimated disease stages and their corresponding 95% confidence intervals.
The confidence intervals of the AUCs were determined using bootstrap resampling while
stratifying the diagnostic classes to maintain their relative proportions. Co-init DEBM AUC
represents the AUCs obtained when separate disease timelines were estimated for APOE ε4
non-carriers and carriers, whereas DEBM AUC represents the AUCs obtained when a
combined disease timeline was estimated. NR and NC represent the number of subjects in the
reference group and number of cases respectively.
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Figure 2. Disease timelines of APOE ε4 non-carriers (a) and carriers (b) estimated using co-init DEBM in ADNI.
The plot on top of each subfigure shows the event-centers of the different regions and their respective standard
deviation estimated from a batch of 100 independent bootstrap samples. The 3D visualization (Marinescu et al.,
2019) at the bottom of each subfigure highlights the region that becomes abnormal at the corresponding disease
stage. Total brain volume becoming abnormal is depicted by a black-box surrounding the brain at the corresponding
disease stage. The vertical positioning of the biomarkers in the event-center part of each subfigure shows the
estimated disease timeline in the APOE genotype, which is different for non-carriers and carriers.



disease stages had a significant Spearman correlation with MMSE in both ADNI
non-carriers (R = -0.41, p < 0.001) and carriers (R = -0.48, p < 0.001) as well as in
RS non-carriers (R = -0.08, p < 0.001) and carriers (R = -0.06, p = 0.05).

Experiment 2: Predicting AD based on longitudinal data in the RS cohort

Exp. 2.1: In Figure 4, the trajectories of disease stage over time as estimated by
linear mixed models are shown for the CN, non-AD and incident-AD groups of the
prediction set of RS. The interaction between the incident-AD diagnosis and follow-
up time was statistically significant in both APOE ε4 non-carriers and carriers (CN
vs. incident-AD p = 0.0032 and p = 0.0041 respectively; non-AD vs. incident-AD p
= 0.0039 and p = 0.0032 respectively), meaning that incident-AD subjects showed a
significant increase in disease stage compared to CN and non-AD subjects.

Exp. 2.2: In the left column of Figure 5, the AUCs and the corresponding 95%
confidence intervals for distinguishing incident-AD using two MRI scans based on
longitudinal follow-up of participants are shown for APOE ε4 non-carriers and
carriers. It can be observed that for distinguishing incident-AD from the reference
group, delta disease stage consistently performed the best for both the genotypes. It
outperformed the rates of changes of volumetric measures, with respect to the
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Figure 3.Normalized histograms of the estimated APOE-specific disease stages for the different diagnostic classes in ADNI and
the generalizability set of RS. The normalized histograms of disease stages are shown for (a) APOE ε4 non-carriers in ADNI,
(b) APOE ε4 carriers in ADNI (c) APOE ε4 non-carriers of the generalizability set in RS, and (d) APOE ε4 carriers of the
generalizability set in RS. The x-axis represents the disease stage based on the APOE-specific disease timeline by the co-init
DEBM model, and the y-axis represents the relative percentage of subjects in each diagnostic class, meaning that the relative
percentages of all disease stages of one diagnostic category add up to one. Estimated disease stage is a continuous variable and
was discretized (binned) for visualization purposes only.



obtained AUC. It can also be observed that distinguishing incident-AD from CN and
non-AD subjects in the reference group was harder than distinguishing incident-AD
from CN alone, as reflected by the lower AUCs for almost all the measures used.

Exp. 2.3: The right column of Figure 5 shows that age was an important predictor for
incident-AD. Age distinguished incident-AD well from CN subjects (AUC of 0.73
for both ε4 non-carriers and carriers), but the performance of age as a predictor
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Figure 4. Average disease stage trajectories of participants within the prediction set of RS. The
trajectories are shown separately for CN, non-AD and incident-AD subjects within the APOE ε4 non-
carriers group (a) and the APOE ε4 carriers group (b). 95% confidence intervals are shown as shaded
regions around the trajectories.



dropped substantially when distinguishing incident-AD from CN and non-AD
subjects (AUC of 0.64 for ε4 non-carriers and 0.65 for ε4 carriers). When only the
last MRI scan was used for incident-AD prediction from a reference group of CN
and non-AD subjects, volumes of hippocampus and entorhinal cortex were good
indicators in APOE ε4 carriers (AUC of 0.79 and 0.81 respectively) but not for
APOE ε4 non-carriers (AUC of 0.64 and 0.63 respectively). Similarly, total brain
volume and ventricle volume were good indicators of incident-AD in APOE ε4 non-
carriers (AUC of 0.73 and 0.68 respectively), but not for ε4 carriers (AUC of 0.64
and 0.59 respectively). Disease stage estimated using the APOE-specific disease
timeline performed well consistently in both the APOE genotypes (AUC of 0.74 for
ε4 non-carriers and 0.76 carriers). The marginal utility of an additional MRI scan can
be observed by comparing the left column of Figure 5 with the right column of Fig.
5. It can be seen that delta disease stage was much better for incident-AD prediction
from a reference group of CN and non-AD subjects (AUC of 0.81 for ε4 non-carriers
and 0.88 for carriers) than any measure obtained using only the last MRI scan.
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Figure 5. Predicting incident-AD subjects in the RS cohort. Figure (a) shows the AUCs for
distinguishing incident-AD while using data from two MRI scans based on longitudinal follow-up of
the participants. Figure (b) shows the AUCs for distinguishing incident-AD using only the last MRI
scan available for each participant.



Discussion
In this work, we constructed APOE-specific disease timelines in a case-controlled
setting and validated their generalizability to a population-based setting. We
assessed that progression along these timelines is predictive of AD in the general
population. In this section, we discuss the insights we obtained from our results.

Generalizability of the APOE-specific disease timelines

The disease timelines estimated for APOE ε4 non-carriers and carriers were
significantly different from one another and highlighted the APOE-genotype-specific
differences in the loss of structural integrity as AD progresses. Ventricular volume
and total brain volume were early biomarkers for ε4 non-carriers, and hippocampal
volume and volume of the entorhinal cortex were early biomarkers for ε4 carriers.
We observed in the normalized histograms that for a proportion of prevalent-AD
subjects in the ε4 non-carriers group, the model had estimated a low disease stage.
This observation, in combination with the greater uncertainty of the event-centers in
that group suggests that there is intra-genotype heterogeneity among the ε4 non-
carriers.

The disease timelines were estimated after correcting for the confounding effect of
age, assuming a linear relationship of volumetric biomarkers with respect to age.
Non-linear biomarker relationship with age such as the one observed in Vinke et
al.83, could have an adverse effect in the generalizability of the model to the RS
cohort, particularly due to the observed differences in the mean age of the
participants in the reference group and the groups of incident-AD and prevalent-AD.
In spite of these differences, we observed that the normalized histograms of disease
stages in the different diagnostic classes were visually largely similar for ADNI and
RS. An important difference between the two cohorts was that the model estimated
a low disease stage for a substantial proportion of incident-AD subjects in RS, but
not in ADNI. Complementing the qualitative analysis, we also observed that the
disease stages obtained using co-init DEBM could distinguish prevalent-AD
subjects from CN and non-AD subjects almost equally well in both ADNI and RS
cohorts. However, we noticed a lower performance in distinguishing incident-AD
from CN and non-AD subjects in RS as compared to ADNI. Three possible
explanations for these differences between ADNI and RS are given below.

First, the incident-AD group in ADNI only consisted of prodromal AD subjects with
the mean time to AD diagnosis of 1.4 years, whereas the incident-AD group in RS
consisted of prodromal and preclinical AD subjects with the mean time to AD
diagnosis of 2.8 years. We observed in Experiment 1 that the obtained disease stages
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of incident-AD subjects correlated with time to AD diagnosis for APOE ε4 carriers,
making AD harder to detect in the preclinical phase than in the prodromal phase.
Hence the difference in the mean time to diagnosis in the two datasets is expected to
be a factor contributing to the observed lower performance in the RS cohort.

Secondly, the prodromal AD subjects in ADNI were clinically defined amnestic MCI
subjects who have a much higher a priori chance of developing AD symptoms than
in the general population, making the prediction in the latter cohort a more difficult
problem.

Thirdly, a factor contributing to the performance difference could be that ADNI
excluded subjects with severe cardiovascular risk factors whereas the RS did not.
Hence the probability of co-morbidity of vascular pathology was higher in the RS
incident-AD subjects than in the corresponding ADNI set, which could have led to
the drop in performance.

In spite of these factors, biologically, one could expect a Normal distribution of AD
severity among incident-AD subjects in a population, whereas the observed
distribution in Figure 3 is not. A possible explanation for this apparent anomaly is
that, although the biological progression of AD is heterogeneous with differences
between subjects even within each genotype, the staging is performed on the basis
of a mean disease timeline per genotype. Progression of subjects that is not along the
estimated mean disease timeline is not accounted for in our approach, and the
corresponding stages are usually an under-estimation of the true biological staging.

We observed that the correlation of MMSE with the obtained disease stages in RS
was substantially lower than that in ADNI. One of the reasons for this lower
correlation in RS could be that MMSE is a measure of general cognition, not specific
to AD and there could be numerous other factors affecting its value in a population-
based cohort. Furthermore, in AD the MMSE range is expected to be much broader
than in the general population. This in combination with less prevalent-AD cases
within RS compared to that of ADNI, could explain the lower correlation as well.
Moreover, the correlation of MMSE with the obtained disease stage was similar for
non-carriers and carriers as measured along their respective disease timelines.

Given the high AUCs for all other classification tasks, the comparable disease stage
histograms in ADNI and RS, and the possible explanations given above for the
specific differences related to incident-AD prediction, we conclude that the APOE-
specific disease timelines obtained by co-init DEBM are generalizable from a case-
controlled to a population-based setting. Moreover, in our experiment, we observed
that co-init DEBM was more generalizable to RS cohort than DEBM for APOE non-
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carriers, and equally generalizable for ε4 carriers. This could be because ADNI
cohort is more enriched for ε4 carriers than the population-based RS cohort and not
stratifying based on APOE skewed the estimated timeline more towards ε4 carriers.

However, for precise classification of subjects into either diagnostic category, a cut-
off point for disease stage needs to be defined. We expect the cut-off point to be
different in a case-controlled setting versus a population-based setting. Estimating
this cut-off point in a population should ideally be estimated using an independent
validation set taking several factors into consideration such as the a-priori
prevalence of AD in the cohort, and the risks associated with false positives and
negatives of this classification.

Predicting pre-symptomatic AD in the RS cohort

We observed that a participant’s age distinguished incident-AD well from CN. This
is in line with earlier studies that identified age as an important predictor.334,335

However, we also observed that the predictive performance of age deteriorated when
the reference group was less healthy, i.e., when distinguishing incident-AD from a
combined reference group also consisting of subjects with subjective or objective
cognitive decline unrelated to AD. This is in line with the expectation that age is poor
in distinguishing cognitive decline due to AD and cognitive decline due to other
causes.

The predictive performance of the volumetric biomarkers from a single MRI scan
depended on the APOE ε4 carriership. We observed that hippocampus and entorhinal
cortex were good predictors in APOE ε4 carriers. Interestingly, those biomarkers
were estimated to be early in the corresponding disease timeline. Similarly, total
brain volume and ventricle volume were good predictors in APOE ε4 non-carriers
which were also the early biomarkers in its disease timeline. These results suggest
that for predicting pre-symptomatic AD, early biomarkers play an important role and
that it is important to understand the genotype-specific differences. However, it must
be noted that in this study, the clinical diagnosis of AD was not confirmed further
with the participant’s amyloid-β status. Hence part of the differences observed in the
disease timelines of APOE ε4 non-carriers and carriers could be attributed to the
presence of greater heterogeneity in the non-carriers with respect to participant’s
pathologic diagnosis.

Lastly, we assessed the marginal utility of longitudinal MRI scans in identifying
individuals at-risk of developing AD symptoms. We observed that participants with
incident-AD showed a significant increase (p < 0.005) in disease stage over time as
compared to CN and non-AD participants, in both APOE ε4 non-carriers and
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carriers. The rate of change of disease stage distinguished incident-AD subjects
better than the disease stage at only the last scan, clearly highlighting the added value
of longitudinal MRI scans, particularly in pre-symptomatic subjects. The rate of
change of disease stage was also a better predictor of incident-AD than any other
volumetric biomarker used in this study. This showed that the progression along the
APOE-specific disease timeline can be used to identify subjects in a population at-
risk of developing AD.

In this study, we only used imaging biomarkers because cerebrospinal fluid
biomarkers in a pre-clinical setting are usually not available. Recent breakthroughs
in blood-based biomarkers336 could help in obtaining fluid biomarkers in the pre-
clinical phase of the disease. Previous work on DEBM326 and co-init DEBM327 had
shown that the model is capable of incorporating biomarkers from multiple
modalities for constructing the disease timelines. We expect that our current
approach of predicting pre-symptomatic AD in the general population would be
applicable also in the presence of fluid biomarkers, should they become available in
the future.

Conclusion and future work

We conclude that data-driven disease timelines estimated by co-init DEBM are
generalizable to population-based cohorts and that progression of individuals along
such timelines is predictive of incident AD. Although the current study only
considered volumetric biomarkers as inputs, it can be extended to fluid-based
biomarkers, if these would become available in a population based study. Due to its
robustness and explainability, we expect that our model can help identify at-risk
individuals from the general population for targeted clinical trials as well as provide
biomarker based objective assessment in such trials.
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The aim of this thesis was to gain insight in the brain aging patterns, to
ultimately improve our understanding of the continuum of aging and age-
related diseases. In this chapter I describe the main findings and place them

in a broader perspective. Furthermore, I discuss the methodological considerations,
implications and future perspectives.

Main findings
In this thesis I investigated and described brain aging based on the following three
objectives:

1. Quantification of brain aging trajectories of structural imaging markers,
cognitive function and motor function, and the brain aging patterns based on
these markers. (Chapter 2: Quantifying brain aging trajectories)

2. Determining the association between risk factors and the brain aging
trajectories. (Chapter 3: Determinants of brain aging)

3. Determining how brain aging can inform disease assessment and prediction.
(Chapter 4: Clinical implications of brain aging)

Quantifying brain aging trajectories

To understand how different changes in the brain coincide and interact in aging, it is
essential to have longitudinal data of a broad range of markers, per subject. To this
end, in Chapter 2.1 en 2.2 I estimated trajectories of imaging markers, cognitive and
motor function based on longitudinal data and used these to estimate the brain aging
patterns. The age at which a marker was considered to have changed, was based on
the change of the marker exceeding a threshold based on the variance of that marker.
The resulting sequence of changing markers can be interpreted as an average
sequence of the broad spectrum of aging in the population. In accordance with
literature, the trajectories of brain imaging markers often showed a non-linear curve
with accelerating change with advancing age.16,27,30,32,34,49–52,337 The brain aging
pattern, based on a change exceeding 2 standard deviations after the age of 45,
showed that total brain volume changes first, followed by mean diffusivity, white
matter, hippocampus, and total grey matter and fractional anisotropy being the last
markers to change (Chapter 2.1). Cognitive and motor function trajectories generally
decline linearly between the ages of 45 and 65 years, followed by a steeper decline
after the age of 65–70 years. Test scores for cognitive and motor function declined
similarly, with high variation in the rate of decline across age for individual tests. No
distinct patterns of an overall decline in cognitive function preceding motor function
or vice versa was found (Chapter 2.2). Global gyrification of the cerebral cortex
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decreased linearly with age during adulthood and gyrification in the medial
prefrontal cortex increases towards the end of life. Gyrification was associated with
higher levels of cognitive performance in some local regions of the cortex
irrespective of surface area (Chapter 2.3). In Chapter 2.4, the perspective on brain
aging changed from estimating the average brain aging pattern, to identifying
potential different brain aging patterns present in the population. I found two patterns
of structural brain changes with aging, which can be considered as two subtypes of
brain aging. The first subtype is characterized by early (midtemporal) cortical
atrophy, whereas the second subtype is characterized by early ventricle enlargement
and total brain atrophy. Since the white matter subtype showed both more white
matter atrophy and a higher burden of focal cerebral small vessel disease markers,
as well as lower scores on cognitive function tests, the white matter subtype may
present a less successful brain aging subtype.

Determinants of brain aging

In Chapter 3 I used trajectories of different markers to investigate if and how certain
determinants alter these brain aging trajectories. In Chapter 3.1 I found that a larger
burden of intracranial carotid artery calcification and vertebrobasilar artery
calcification is associated with faster increase of cerebral small vessel disease
markers over time. In Chapter 3.2 I showed that worse cardiovascular health was
associated with a faster increase in white matter hyperintensity volume with
advancing age and lower hippocampus volume. Furthermore I found that APOE ε4
genotype was associated with more microbleeds and faster increase in white matter
hyperintensities with advancing age. In Chapter 3.3 I investigated whether hearing
loss, a promising modifiable risk factor for cognitive decline and dementia,121,247

accelerates cognitive decline. In contrast to other population-based studies,250,253 I
showed that hearing loss was not associated with accelerated cognitive decline. The
association between hearing loss and accelerated cognitive decline was driven by the
non-linear relationship between cognitive function and age. This underlines the
importance of understanding brain aging and cognitive aging, when investigating the
effects of risk factors.

Clinical implications of brain aging

In Chapter 4 I focussed on determining how brain aging can inform disease
assessment and prediction. In Chapter 4.1 I estimated percentile curves of
subcortical structures based on three different reference populations, using a single
segmentation tool. I found that percentile curves of subcortical structures, based on
the different reference populations largely overlap. This indicates that there are only
small differences between the subcortical volumes of these populations, regardless
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of differences in acquisition, field strength, vendors, and population differences.
Furthermore, this indicates that in a clinical setting, individual diagnostic assessment
based on subcortical volume, may not be biased by the use of a specific reference
population. However, the use of the same segmentation tool is crucial here. Several
studies have shown differences in segmentation methods where they evaluated
accuracy, correlation, absolute or relative differences of different brain regions.338–345

A recent study investigated the impact of different brain region segmentation
methods on single-subject analysis, where they concluded that for single-subject
analysis, it is essential that the same method is used to generate normative volume
distributions and patient-specific volumes.346 In Chapter 4.2 I used a data-driven
disease progression model to construct APOE-specific Alzheimer’s disease related
disease timelines based on structural imaging markers in a case-control setting. The
data-driven disease timelines were generalizable to population-based cohorts and the
progression of individuals along such timelines were predictive of incident
Alzheimer’s disease.

Methodological considerations
The strengths and shortcomings of the individual studies presented in this thesis
have been discussed in the corresponding chapters. Therefore, in this section I
discuss four more general topics which are essential in brain aging research and
apply to the research presented in this thesis.

Definition of ‘normal’ aging

The definition of what is normal and what is normal aging in research is highly
dependent on the context of the research that is performed. Defining what is normal
is often not the main goal, merely a necessity to enable research focussing on
disease. However, even within research focussing on aging itself, there is no
consensus on what we consider normal aging. Brain aging is especially of interest in
the context of neurological and neurodegenerative diseases, therefore a population
without neurological diseases as ‘normal’ brain aging reference is essential.
Therefore, in this thesis normal brain aging is defined as brain aging in a population
free of overt neurological disease. However a population free of overt neurological
disease, may still contain people who are in a pre-clinical phase of the neurological
disease. Therefore this definition of ‘free of disease’ depends on the diagnostic
criteria of these diseases. In this thesis, scans of participants with a diagnosis
Parkinson’s disease (and parkinsonism), dementia or clinical stroke were excluded
from analyses in which brain aging trajectories were estimated. These diseases have
a large impact on brain structure ánd functioning. Scans from participants that were
in the pre-clinical phase were still included in the study population. The impact of
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the inclusion of the pre-clinical phase within brain trajectories depends on the
prevalence of the disease, the length of the pre-clinical phase, the age of diagnosis
and the progression pattern of changes in the marker(s) of interest during the pre-
clinical phase. With the pathophysiological process of Alzheimer’s disease starting
years if not decades before clinical diagnosis, presumably the pre-clinical phase of
neurodegenerative diseases increases the width of the normal brain aging spectrum.
Furthermore, it could result in an overestimation of the deterioration of brain
structure and function in brain aging, close to the average age of diagnosis of these
diseases. As was shown in Chapter 2.1, above the age of 70 more than 20% of
‘healthy’ individuals have one or more microbleeds, and almost 10% have one or
more cortical infarcts visible on their brain MRI. Although these participants were
free of neurodegenerative disease, these structural brain changes are considered
pathological and perhaps a pre-clinical phase of disease, yet remain part of the
spectrum of normal brain aging. In Chapter 2.4 these lesions seem to be more present
in the white matter brain aging subtype, which we therefore consider a potentially
less successful brain aging subtype.

Though I believe that within aging research we will remain dependent on the
definition of disease, it is essential to be aware of the dynamic nature of this
definition and the impact of this definition on the width of the normal aging
spectrum. Subsequently the width of the normal aging spectrum should be kept in
mind when choosing methodological approaches to investigate brain aging and
interpreting the results.

Spectrum of brain aging

Our view on brain aging goes hand in hand with our definition of normal aging. The
broader the definition of normal, the broader the spectrum of normal brain aging.
When you assume that brain aging is a single homogeneous process, the spectrum of
brain aging is a result of temporal heterogeneity, i.e. different phases in the process
occurring at different times within individuals. The single homogeneous process
could be captured by estimating the average aging trajectories of a broad range of
markers. The variation in the speed in which each of these trajectories occur between
individuals result in the broad spectrum of brain aging. The extremes of the spectrum
could then be considered as accelerated or delayed brain aging. This perspective of
brain aging underlies studies that estimate the biological brain age and the
corresponding brain age gap of an individual. However, concerns regarding the
assumption that brain aging is a single homogeneous process with some temporal
heterogeneity are revealed when comparing the brain aging patterns in Chapter 2.1
and Chapter 2.4. The average brain aging pattern, extracted from brain aging
trajectories of a range of imaging markers, is not equal to the most frequent brain
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Box 1: Temporal and phenotypic heterogeneity

Figure A shows two hypothetical
courses of cognitive functioning in
aging: ‘successful’ (green) and
‘unsuccessful’ (red) cognitive aging.
When we assume that these courses of
cognitive aging result from changes in
3 different biomarkers (biomarker A, B
and C). Figure B presents the changes
in these biomarkers with age which
belong to the ‘successful’ cognitive
aging course. Biomarker A changes the
fastest, followed by biomarker B and
finally biomarker C. When you assume
that the cognitive aging course is
driven by a single pattern of changes in
biomarkers, with differences in timing
and rates of change in these markers,
Figure C and D show two forms of
temporal heterogeneity. In the
biomarker trajectories of unsuccessful
aging in Figure C, the pattern and the
rates at which the biomarker change
are identical to those in successful
aging. However the age of onset at
which these changes start is a few years
earlier. In the biomarker trajectories of
unsuccessful aging in Figure D on the
other hand, the pattern and the age of
onset of the changes in biomarkers is
identical to those in successful aging.
However the rate at which the
biomarkers change is higher in unsuccessful aging. Note that in both Figure C and D, the
relative distances between the biomarkers within successful and unsuccessful aging are
identical. Figure E on the other hand, presents a situation in which these relative distances
between biomarkers are not identical between successful and unsuccessful aging. This is
called phenotypic heterogeneity.



aging pattern within the population. The average brain aging pattern estimated in
Chapter 2.1, showed most resemblance to the subtype that occurred in
approximately 30% of the population (as shown in Chapter 2.4). This elucidates that
studying brain aging trajectories of a broad range of markers individually, only
provides us a small window into the complex brain aging process. Though
considering brain aging as a single homogeneous process seems to be an
oversimplification of the brain aging process, it is very likely that the two subtypes
described in Chapter 2.4 are still an oversimplification of the actual phenotypic
heterogeneity of brain aging. In Box 1 the interpretation of temporal and phenotypic
heterogeneity in the context of this thesis is further explained.

The scope of phenotypic heterogeneity of brain aging that we can capture, depends
on the types of information on which the brain aging phenotypes are based. For
example, Smith et al.193 identified 62 different brain aging patterns, so called
‘modes’, based on 6 imaging modalities. These modes represent different aspects of
brain aging, showing distinct patterns of structural and functional brain change. In
addition, these 62 modes were grouped into 6 clusters, to help understand larger
patterns of brain aging. Another example of an approach to understand brain aging
patterns, is to examine brain aging patterns based on potential underlying
mechanisms. Garbarino et al. investigated the brain atrophy pattern in aging,
Alzheimer’s disease and multiple sclerosis by linking brain atrophy and
connectivity.347 With these different types of information and approaches to estimate
brain aging patterns, each combination of type of information and approach provides
one window into the brain aging process. The challenging task is not identifying
brain aging patterns in itself, but how to relate the found patterns to each other and
to combine these different pieces of information to create a full picture of the brain
aging process.

The scope of phenotypic heterogeneity also highly depends on the age range
included. One could argue whether brain development and brain aging should be
considered as two separate fields of research or that perhaps it is essential to
investigate phenotypic and temporal heterogeneity across the lifespan, to understand
brain aging. Taking the brain aging subtypes identified in Chapter 2.4 as an example,
I cannot exclude that differences in brain structure before the age of 45 have a
neurodevelopmental origin. The same holds for the results presented in Chapter 2.1,
I cannot conclude whether the sex differences in the imaging marker trajectories are
mostly driven by temporal heterogeneity, phenotypic heterogeneity or both.
Capturing brain trajectories over the entire lifespan, as was recently done by
Bethlehem et al.337 in the largest synthesis of brain imaging data to date, can help us
explain the variation in brain trajectories between brain regions and individuals.
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Resilience against brain aging

Three important concepts in brain aging and cognitive aging, which capture the
‘resilience’ against age- and disease-related changes are: cognitive reserve, brain
reserve and brain maintenance.348 These concepts emerged from the disjunction
between the degree of observed brain changes or pathology and the clinical
manifestation of those brain changes. Cognitive reserve refers to the adaptability of
cognitive processes, which explains differential susceptibility of cognitive
functioning to brain aging or pathology. Brain reserve is commonly conceived as
neurobiological capital, such as number of neurons or synapses, which allows to
better cope with brain aging and pathology, before clinical or cognitive changes
emerge. Brain maintenance is defined as reduced development over time of age-
related brain changes and pathology based on genetics or lifestyle. In this thesis I
have described brain aging trajectories of both brain structure, cognition and motor
function, however the interrelations between structural brain changes and cognition
or motor function were outside the scope of this thesis. This does not alter the fact
that what in this thesis is described as variability within brain aging could also be
interpreted as variation in these concepts of resilience.

Brain aging in relation to etiological and prediction research

From an epidemiological perspective, two large research domains in biomedical
research are considered: prediction and etiological research. In general,
epidemiologists emphasize that these domains should be considered as separate
research areas, since they differ in aim, use and research approach. Where prediction
research is focused on recognizing individuals with (early or prodromal) disease or
at increased risk of disease and etiological research is focused on identifying causes
of disease. Recent advances in machine learning methods in biomedical research,
such as deep neural networks and random forest, are increasingly becoming major
players in the clinical decision making, diagnosis and medical imaging domains.
Machine learning methods have proven to be of added value within these fields.
With the primary aim of prediction research being recognizing individuals with
disease, machine learning methods improving early diagnosis, clearly impact the
prediction research domain. Whether these approaches can reach a similar impact
within etiological research is under debate.349,350 Application of machine learning
methods in etiological research is not straightforward, for a number of reasons. With
the etiological and prediction domains having different aims, the optimization
parameters are different. Reaching the highest accuracy in predicting disease, does
not (perse) result in the most accurate effect size estimation of a determinant for that
disease. Though optimization parameters can be chosen, the key difference between
the two research domains is the role of expert knowledge. Which often plays a
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limited role in data-driven prediction models, while within etiologic research the
definition and identification of the causal question relies on the substantive
knowledge of the expert. Claiming that machine learning methods impact etiological
research in a similar way as prediction research, in the eyes of many etiological
researchers means claiming that the causal relations structure can be determined
based on data alone.

Though I agree with the notion that the causal relationships structure cannot be
determined from data alone, categorizing studies according to their research aim
does not perse result in avoiding misinterpretation of results, since more and more
aspects of both the prediction and etiological framework are used to answer one
research question. Taking Chapter 2.4 of this thesis as an example, although the
overall aim was to describe brain aging patterns within a population, aspects of the
predictive and etiological research framework were used. A data-driven disease
progression model was used, which is both predictive of disease progression and
informative in terms of revealing potential underlying biological patterns.190 The
resulting model was the result of a balance between imposed knowledge and patterns
learned from data. The term ‘data-driven’ in the context of these type of models does
not mean that no prior knowledge of the disease was used to for example select the
features included in the model, but refers to the fact that these models do not rely on
a-priori classification or staging of individuals. These models may be an example of
models originating from the prediction research field, but viewing it as a model
solely for optimal prediction does not do it justice. Similarly, there are developments
in causal inference which are examples of the causal inference framework meets
prediction.351,352

I believe it is important to be aware of the fundamental differences between
etiological and prediction research, however it is just as important to stay
openminded. I believe that machine learning methods can have a similar impact on
etiological research, but perhaps in an indirect way, where it can potentially improve
the exploratory stage and statistical inference of the causal inference framework.
Whether or not we can say that with that role machine learning can infer causality is
a matter of definition. Let us not linger too long on these definitions, but focus on
where machine learning and other computation approaches can improve etiological
research. In fact, the intersection at which the two meet each other may be what is
needed to accelerate our understanding of human biology, and may even be a match
made in heaven. When etiology and prediction meet, or perhaps even to make sure
they do, we must prevent being lost in translation.

With brain aging being so intertwined with age-related neurodegenerative disease, it
is clear that our understanding of brain aging impacts both research focussing on
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identifying causes of disease, as well as prediction research. A better understanding
of brain aging will go hand in hand with a better understanding of disease, and could
help us gain new insights in potential determinants of disease. Similarly, a better
understanding of the sources of variability in brain aging will impact prediction
research, perhaps even in such a way that there will be a paradigm shift of our view
on brain aging, in which terms like ‘healthy controls’ or ‘normal controls’ are
replaced by aging signatures that do cover the complexity of brain aging.

Age as a major confounder in longitudinal brain research

Advanced age is associated with a decline in cognitive and motor function, loss of
hearing and vision, as well as with numerous concomitant medical disorders, such
as cardiovascular diseases and neurodegenerative diseases. Therefore, when the
relation between such an outcome and a determinant is assessed, age is often
considered as a major confounder. Correction for the confounder age is often done
by integrating age as a linear term into the statistical model. However, when the
determinant and outcome are continuous variables, there is often a non-linear
relation between age and the specific outcome or determinant. In case both the
determinant and outcome have a non-linear relationship with age, correcting for age
with only a linear term is insufficient and results in residual confounding by age. In
cross-sectional analyses, this could largely be avoided by integrating a non-linear
term for age (for example using natural cubic splines) into the model.

In longitudinal models in which the time variable is not age, but for example follow-
up time from baseline, integrating a non-linear term for age into the model is
insufficient. This is illustrated in Figure 2. Imagine the research question: ‘Is
determinant X associated with accelerated cognitive decline?’ and we want to
investigate this by using longitudinal cognition data, and determinant X is measured
at baseline. In scenario A of Figure 2, we assume that there is a linear relationship
between age and the cognition outcome. If we then look at the cognition outcome of
three participants, with three different ages at baseline (magenta, blue and yellow,
with age at baseline: 45, 60, 75), we see that with a correction for age at baseline as
a linear term, the estimated trajectories of the cognition outcome are linear and
parallel to one another. Furthermore, the intercept difference between the
participants is based on the age-difference between them (namely βAge at baseline*ΔAge
at baseline), since the age differences are both 15 years, the intercept difference (at
follow-up time=0) in scenario A between magenta and blue, and blue and yellow is
equal.

In scenario B of Figure 2 we assume the relation between the cognition outcome and
age is non-linear. Here you see that with the non-linear relation between cognition
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Figure 2. Illustration of residual confounding by age in longitudinal studies.



outcome and age, the cognition outcome value of magenta and blue are very close
together, which is visible in the intercept differences of the trajectories with follow-
up time. Though the non-linear term for Age at baseline is integrated, the trajectories
with follow-up time are still linear and parallel to each other. In scenario C, similarly
to scenario B, we assume that there is a non-linear relationship between the
cognition outcome and age. However in scenario C we also integrate an interaction
term between Age at baseline and Follow-up time. The addition of this interaction
term enables the cognition trajectories with Follow-up time to have a different slope,
depending on the Age at baseline (where the slope difference per year Follow-up
time between two cognition trajectories is then defined as βinteractionterm *ΔAge at
baseline). With a non-linear relationship between the cognition outcome and age, it
is plausible that within subjects the speed at which the cognition outcome changes
over time, depends on the age, in this example meaning that the cognition outcomes
decreases faster at a higher age.

Imagine that there is indeed a non-linear relationship between the cognitive outcome
and age, and only a non-linear term for Age at baseline is integrated, as shown in
scenario B, while in reality the speed at which the cognition outcome decreases
depends on Age at baseline (as shown in scenario C). If in that case the determinant
X, for example hearing loss, is strongly and non-linearly related to age, the (residual)
association between age and cognition (see scenario D) would be attributed to
hearing loss, since especially the oldest have hearing loss, and the residual aging
effects on cognition is also the largest in these older participants.

Next to considering age as an confouder, age could also be considered as a proxy for
the cummulative damage that has occurred until that specific time. Because of the
multifactoral nature of age-related diseases, the determinantion of those causes of
disease, is a major challenge. In summary, I believe that taking into account the non-
linear relationships with age in longitudinal brain research is crucial, to preclude that
potentially causal relations are missed and non-causal relationships are indicated as
potentially causal.

Implications and Future research

Brain aging trajectories of structural imaging markers, cognitive function and motor
function are essential background information for studies into age-related
neurological diseases. Furthermore these trajectories can also play an important role
in clinical translation, for example as reference values. Especially in studies looking
at differences between age-related pathology and normal aging, it is important to
take into account the non-linear relationship with age. Apart from serving as a
reference for disease, brain aging in itself is an important topic of research. Brain
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aging trajectories of a broad range of markers provide insights in the concurrency of
changing markers. Furthermore these trajectories can be used to investigate the
effects of risk factors on the individual markers over time. A challenging but crucial
next step towards understanding brain aging is to not only show the concurrency of
changes, or the effects of risk factors on the individual marker in aging, but to also
unravel interactions between different markers and risk factors.

I believe that the field of brain aging can take example of research performed in the
setting of multifactorial diseases with a very heterogeneous clinical presentation,
such as dementia or multiple sclerosis. Timing of events such as the onset of certain
symptoms or presence of disease markers are already being used in these diseases to
investigate and identify subtypes of disease and to predict disease progression.
Considering that we may never be able to draw a clear line between normal aging
and abnormal aging, I believe that with a special focus on the timing and sequence
of events in brain aging, we may also be able to identify different patterns of aging
in a similar way, which could potentially explain the sources of the temporal and
phenotypic heterogeneity of brain aging, its impact on brain functioning, and
ultimately improve our understanding of age-related diseases as well.

Concluding remarks/Conclusion

In this thesis I presented brain aging trajectories of structural imaging markers,
cognitive function and motor function in a population free of overt neurological
disease. I have used these trajectories to investigate brain aging patterns and to
investigate the effects different risk factors on brain aging. This thesis highlights the
complexity and the importance of understanding brain aging, as well as the
importance to take into account the often non-linear relationship of these markers
with age.

Based on my findings and reflections, I would like to challenge researchers in the
field of aging and brain aging to first of all dare to create a more holistic perspective
on aging. Though aging is a very complex process, we must avoid
overspecialisation, in which we potentially fail to learn from each other. Secondly, I
call for brain researchers to be aware of advances in etiological, prediction and other
types of methodological research which could provide us with tools that bring us one
step closer towards understanding the aging process.
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English Summary
The aging process is biologically complex and there is a large variation in the effects
of aging on the human body between as well as within individuals. Similarly, the
aging brain is known for its large intra- and inter-individual variability in functioning
and structural changes that occur with advancing age. In a nutshell, the brain shrinks
with advancing age as a result of brain atrophy and age-related changes in cognition
vary considerable across cognitive domains and across individuals. An important
challenge in brain aging research in particular is the overlap in changes in brain
structure and function in aging and neurodegenerative disease, such as Alzheimer’s
disease. Though challenging, this overlap also underlines the importance of
understanding brain aging to ultimately improve our understanding of
neurodegenerative disease. Therefore, the aim of this thesis was to quantify brain
aging trajectories and brain aging patterns. These trajectories were used to
investigate the association between risk factors and brain aging. Furthermore I
assessed how brain aging can inform disease assessment and prediction.

In Chapter 2.1 I presented an overview of the concurrency of changing imaging
markers with aging. I showed trajectories of volumetric, microstructural and focal
imaging markers. In accordance with literature, the trajectories showed often a non-
linear curve with accelerating change with advancing age. The brain aging pattern
showed that total brain volume changes first, followed by mean diffusivity, white
matter, hippocampus, and total grey matter and fractional anisotropy being the last
markers to change. Several studies have investigated sex differences in brain
structure volume in the aging brain, however they have not yielded consistent
results. I showed sex differences in trajectories of all volumetric MRI markers in
aging, after correcting for head size differences. In general, earlier acceleration of
change in global and lobar volumetric and microstructural markers in men compared
with women were found. In Chapter 2.2 I presented cognitive and motor function
trajectories, which generally decline linearly between the ages of 45 and 65 years,
followed by a steeper decline after the age of 65–70 years. Test scores for cognitive
and motor function declined similarly, with high variation in the rate of decline
across age for individual tests. Importantly, whereas a higher level of education was
associated with higher cognitive function, there was no association between level of
education and function on the majority of the motor tests. No distinct patterns of an
overall decline in cognitive function preceding motor function or vice versa was
found. However, in accordance with the white matter changes preceding grey matter
changes with aging as described in Chapter 2.1, the pattern of changes in the
cognitive and motor function test with aging showed that changes in cognitive and
motor domains that depend on white matter integrity (i.e. information processing
speed, executive function and the gait domain “phases”) did occur earlier compared
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to the domains that depend on grey matter volume (i.e. memory and gait domain
“base of support”). In Chapter 2.3 I presented the relation between cortical
gyrification and age and cognition. Global gyrification of the cerebral cortex
decreased linearly with age during adulthood and gyrification in the medial
prefrontal cortex increases towards the end of life. Changes in cortical gyrification
with age are expected, since changes in brain volumes affects the gyrification. Grey
matter atrophy results in a reduction of surface area of the cortex, which leads to
more shallow sulci and consequently a decrease in gyrification. Furthermore,
gyrification increases with higher levels of cognitive performance in some local
regions of the cortex irrespective of surface area. These findings indicate that
gyrification may be an imaging marker of interest within the perspective of brain
aging and cognitive aging. In Chapter 2.4 I identified two patterns of structural
brain changes with aging, which I refer to as brain aging subtypes, among
cognitively normal community-dwelling subjects, using a data-driven approach
based on volumetric imaging markers from brain MRI. The cortical brain aging
subtype was characterized by early (midtemporal) cortical atrophy, whereas the
white matter brain aging subtype was characterized by early ventricle enlargement
and total brain atrophy. Participants assigned to the white matter subtype showed
both more white matter atrophy and a higher burden of focal cerebral small vessel
disease markers than the cortical subtype, as well as lower scores on cognitive
function tests. These results are suggestive of the white matter subtype representing
a less successful brain aging subtype, while the pattern seen in the white matter
subtype shows most resemblance with the average brain aging pattern presented in
Chapter 2.1. This underlines the importance of disentangling this phenotypic
heterogeneity, as almost 70% of the population actually depicts the cortical subtype,
which is not adequately reflected in the previously established average sequence. In
Chapter 2.5 I highlighted the importance and potential of using longitudinal data for
unravelling the brain aging process.

In Chapter 3 trajectories of different markers were determined to investigate if and
how certain determinants alter these brain aging trajectories. In Chapter 3.1 I found
that a larger burden of intracranial carotid artery calcification and vertebrobasilar
artery calcification is associated with faster increase of cerebral small vessel disease
markers with increasing age. In Chapter 3.2 I showed that worse cardiovascular
health was associated with a faster increase in white matter hyperintensity volume
with advancing age and lower hippocampus volume. Furthermore I found that
APOE ε4 genotype was associated with more microbleeds and faster increase in
white matter hyperintensities with advancing age. In Chapter 3.3 I investigated
whether hearing loss is associated with accelerates cognitive decline. Hearing loss
has been put forward as a promising modifiable risk factor for cognitive decline and
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dementia. In contrast to other population-based studies, I showed that hearing loss
was not associated with accelerated cognitive decline. The association between
hearing loss and accelerated cognitive decline was driven by the non-linear
relationship between cognitive function and age. This underlines the importance of
understanding brain aging and cognitive aging, when investigating the effects of risk
factors.

In Chapter 4 I focussed on determining how brain aging can inform disease
assessment and prediction. In Chapter 4.1 I estimated percentile curves of
subcortical structures based on three different reference populations, using a single
segmentation tool. I found that percentile curves of subcortical structures, based on
the different reference populations largely overlap. This indicates that there are only
small differences between the subcortical volumes of these populations, regardless
of differences in acquisition, field strength, vendors, and population differences.
Furthermore, this indicates that in a clinical setting, individual diagnostic assessment
based on subcortical volume, may not be biased by the use of a specific reference
population, as long as the same imaging processing tool is used. Using a data-driven
disease progression model inChapter 4.2, I constructed APOE-specific Alzheimer’s
disease related disease timelines based on structural imaging markers in a case-
control setting. I showed that the data-driven disease timelines are generalizable to
population-based cohorts and that progression of individuals along such timelines is
predictive of incident Alzheimer’s disease.

In Chapter 5 I summarized the main findings of this thesis, I discussed
methodological considerations, implications and future directions. This thesis
highlights the complexity and the importance of understanding brain aging, as well
as the importance to take into account the often non-linear relationship of these
markers with age.
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Nederlandse Samenvatting
Veroudering van het menselĳk lichaam is een zeer complex biologisch proces met
een grote variatie in de mate van vatbaarheid van het menselĳk lichaam voor dit
verouderingsproces, zowel tussen als binnen individuen. Kĳkend naar het brein is er
een grote variabiliteit in veranderingen die plaatsvinden in brein structuur met het
ouder worden. Brein regio’s verschillen in de gevoeligheid voor verandering door
veroudering, maar over het algemeen krimpt het brein naarmate we ouder worden,
genaamd brein atrofie. Tegelĳkertĳd varieert de mate waarin ons cognitief
functioneren verandert met veroudering per domein en tussen individuen. Een
belangrĳke uitdaging in het onderzoek naar brein veroudering is de overlap tussen
veranderingen in brein structuur en functie in veroudering én in neurodegeneratieve
ziekten, zoals de ziekte van Alzheimer. Deze overlap benadrukt, dat met het beter
begrĳpen van brein veroudering, we uiteindelĳk ook neurodegeneratieve ziekten
beter zullen begrĳpen. De doelstelling van dit proefschrift was daarom ook het
kwantificeren van brein veroudering curves en patronen van brein veroudering. Deze
curves heb ik vervolgens gebruikt om de associatie tussen risicofactoren en brein
veroudering te onderzoeken. Vervolgens heb ik onderzocht hoe brein veroudering
ons kan helpen in de beoordeling en predictie van ziekte.

In Hoofdstuk 2.1 presenteer ik curves van brein volumes, microstructuur en focale
laesies en beschrĳf ik de samenloop van deze brein veranderingen met het ouder
worden. In overeenstemming met de literatuur zĳn deze curves vaak non-lineair, met
snellere brein veranderingen naarmate leeftĳd toeneemt. Het patroon in brein
veroudering laat zien dat totale brein volume het eerst verandert, gevolgd door de
gemiddelde diffusie, witte stof, hippocampus, met als laatste de grĳze stof en
fractionele anisotropie. Verscheidene studies hebben onderzoek gedaan naar
verschillen in brein structuur volume tussen mannen en vrouwen, maar deze hebben
geen consistente resultaten laten zien. Ik laat zien dat de brein veroudering curves
verschillen tussen mannen en vrouwen, na correctie voor verschillen in hoofd
grootte. Over het algemeen is er een vroegere toename in snelheid van de
veranderingen in globale en lobaire brein volume en microstructuur in mannen, in
vergelĳking met vrouwen. In Hoofdstuk 2.2 presenteer ik veroudering curves van
cognitieve functies en motor functies, waarin in het algemeen een lineaire afname
tussen de leeftĳden 45 en 65 is te zien, wat gevolgd wordt door een sterkere afname
na de leeftĳd van 65-70 jaar. Test scores van cognitieve functies en motor functies
nemen op een vergelĳkbare manier af met leeftĳd, met een grote variatie in de mate
van afname over leeftĳd voor de individuele testen. Belangrĳk daarbĳ is dat waar
een hoger educatie niveau geassocieerd was met een hoger cognitieve functie, er
geen associatie was tussen educatie en de meerderheid van de motor functie testen.
Er was geen duidelĳk patroon waarin cognitieve functie voorafgaand aan motor
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functie afneemt of vice versa. Echter, in overeenstemming met de witte stof afname
voorafgaand aan grĳze stof afname met veroudering zoals beschreven in Hoofdstuk
2.1, was te zien dat cognitieve en motor functie testen die afhankelĳk zĳn van de
witte stof integriteit (zoals de snelheid van informatieverwerking, uitvoerend
functioneren en het looppatroon domein “fases”) eerder veranderden dan testen die
afhankelĳk zĳn van grĳze stof volume (zoals geheugen en looppatroon domein
“basis van ondersteuning”). In Hoofdstuk 2.3 presenteer ik de relatie tussen
corticale gyrificatie en leeftĳd en cognitie. Globale gyrificatie van de cerebrale
cortex neemt bĳ volwassenen lineair af met leeftĳd en gyrificatie in de mediale
prefrontale cortex neemt toe op hoge leeftĳd. Veranderingen in corticale gyrificatie
met leeftĳd werden verwacht, aangezien veranderingen in brein volume invloed
heeft op gyrificatie. Grĳze stof atrofie resulteert in een afname van de oppervlakte
van de cortex, wat leid tot ondiepere sulci, met als gevolg een afname van gyrificatie.
Gyrificatie neemt toe met een hoger niveau van cognitieve prestaties in sommige
regio’s van de cortex, onafhankelĳk van de oppervlakte van deze regio’s. Deze
bevindingen tonen aan dat gyrificatie mogelĳk een interessante marker is in het
domein van brein veroudering en cognitieve veroudering. In Hoofdstuk 2.4 heb ik
twee patronen van structurele brein veroudering geïdentificeerd, oftewel subtypes
van brein veroudering, onder cognitief normale thuiswonende personen, gebruik
makend van een data gedreven benadering op basis van brein volumetrie. Het
corticale subtype kenmerkt zich door vroege (midtemporale) corticale atrofie, terwĳl
het witte stof subtype zich kenmerkt door vroege toename van het ventrikel volume
en totale brein atrofie. Personen met een verouderingspatroon passend bĳ het witte-
stof subtype hadden meer witte stof atrofie en meer focale laesies dan het corticale
subtype, en daarnaast slechtere scores op cognitieve testen. Deze resultaten wĳzen
erop dat het witte stof subtype mogelĳk een minder succesvol brein veroudering
subtype is, dit terwĳl het patroon van het corticale subtype de meeste gelĳkenis
vertoond met het brein verouderingspatroon in Hoofdstuk 2.1. Dit benadrukt het
belang van het ontrafelen van de fenotypische heterogeniteit, aangezien bĳna 70%
van de populatie een brein verouderingspatroon heeft wat meer lĳkt op het corticale
subtype, wat niet overeenkomt met het gemiddelde patroon beschreven in Hoofdstuk
2.1. In Hoofdstuk 2.5 benadruk ik het belang en de potentie van het gebruiken van
longitudinale data voor het ontrafelen van het brein verouderingsproces.

In Hoofdstuk 3 zĳn de curves van verschillende markers bepaald om te onderzoeken
hoe bepaalde determinanten deze brein veroudering curves beïnvloeden. In
Hoofdstuk 3.1 heb ik geconstateerd dat meer intracraniële carotis calcificatie en
vertebrobasilaris calcificatie geassocieerd is met een snellere toename van focale
laesies met veroudering. In Hoofdstuk 3.2 heb ik laten zien dat een slechtere
cardiovasculaire gezondheid geassocieerd is met een snellere toename in witte stof
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hyperintensiteiten met veroudering en een lager hippocampus volume. Daarbĳ zag
ik dat het APOE ε4 genotype geassocieerd is met meer microbloedingen en een
snellere toename van witte stof hyperintensiteiten met veroudering. In
Hoofdstuk 3.3 heb ik onderzocht of gehoorverlies geassocieerd is met een versnelde
cognitieve achteruitgang. Gehoorverlies is naar voren geschoven as een
veelbelovende aanpasbare risicofactor voor cognitieve achteruitgang en dementie.
In tegenstelling tot andere populatie studies, heb ik laten zien dat gehoorverlies niet
geassocieerd is met versnelde cognitieve achteruitgang. De associatie tussen
gehoorverlies en versnelde achteruitgang werd gedreven door de non-lineaire relatie
tussen cognitie en leeftĳd. Dit benadrukt het belang van het begrĳpen van brein
veroudering en cognitieve veroudering in onderzoek naar de effecten van risico
factoren.

In Hoofdstuk 4 focus ik op het bepalen hoe brein veroudering ons kan bĳdragen in
de beoordeling en predictie van ziekte. In Hoofdstuk 4.1 heb ik percentiel curves
bepaald van subcorticale structuren, gebaseerd op drie verschillende referentie
populaties. Ik concludeerde dat percentiel curves van subcorticale structuren,
gebaseerd op de verschillende referentie populaties, grotendeels overlappen. Dit
betekent dat er mogelĳk slechts kleine verschillen zĳn in subcorticale volumes,
ondanks de verschillen in populatie, acquisitie, veld sterkte, en merk van de MRI
scanners. Daarbĳ impliceert dit dat in een klinische setting, waarbĳ individuele
diagnose gebaseerd wordt op subcorticale volume, er mogelĳk geen bias ontstaat op
basis van de referentie populatie, zolang dezelfde imaging processing is toegepast.
Gebruik makend van een data gedreven ziekte progressie model in Hoofdstuk 4.2,
heb ik het effect van het APOE genotype op het ziekteprogressie patroon van de
ziekte van Alzheimer bepaald aan de hand van structurele brein volumes in een case-
control setting. De resulterende ziekteprogressietĳdslĳnen waren generaliseerbaar
naar een populatie cohort en de progressie van een individu over deze tĳdslĳn is
voorspellend voor het krĳgen van de ziekte van Alzheimer.

InHoofdstuk 5 heb ik de belangrĳkste bevindingen van dit proefschrift samengevat,
methodologische overwegingen, implicaties en aanbevelingen voor toekomstig
onderzoek bediscussieerd. Dit proefschrift benadrukt de complexiteit en het belang
van het begrĳpen van brein veroudering, en het belang van het rekening houden met
een vaak niet-lineaire relatie tussen determinanten en uitkomsten met leeftĳd.
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