3,954 research outputs found

    Domain formation in membranes with quenched protein obstacles: Lateral heterogeneity and the connection to universality classes

    Full text link
    We show that lateral fluidity in membranes containing quenched protein obstacles belongs to the universality class of the two-dimensional random-field Ising model. The main feature of this class is the absence of a phase transition: there is no critical point, and macroscopic domain formation does not occur. Instead, there is only one phase. This phase is highly heterogeneous, with a structure consisting of micro-domains. The presence of quenched protein obstacles thus provides a mechanism to stabilize lipid rafts in equilibrium. Crucial for two-dimensional random-field Ising universality is that the obstacles are randomly distributed, and have a preferred affinity to one of the lipid species. When these conditions are not met, standard Ising or diluted Ising universality apply. In these cases, a critical point does exist, marking the onset toward macroscopic demixing.Comment: 10 pages, 10 figure

    Fluids with quenched disorder: Scaling of the free energy barrier near critical points

    Full text link
    In the context of Monte Carlo simulations, the analysis of the probability distribution PL(m)P_L(m) of the order parameter mm, as obtained in simulation boxes of finite linear extension LL, allows for an easy estimation of the location of the critical point and the critical exponents. For Ising-like systems without quenched disorder, PL(m)P_L(m) becomes scale invariant at the critical point, where it assumes a characteristic bimodal shape featuring two overlapping peaks. In particular, the ratio between the value of PL(m)P_L(m) at the peaks (PL,maxP_{L, max}) and the value at the minimum in-between (PL,minP_{L, min}) becomes LL-independent at criticality. However, for Ising-like systems with quenched random fields, we argue that instead ΔFL:=ln⁡(PL,max/PL,min)∝Lξ\Delta F_L := \ln (P_{L, max} / P_{L, min}) \propto L^\theta should be observed, where ξ>0\theta>0 is the "violation of hyperscaling" exponent. Since ξ\theta is substantially non-zero, the scaling of ΔFL\Delta F_L with system size should be easily detectable in simulations. For two fluid models with quenched disorder, ΔFL\Delta F_L versus LL was measured, and the expected scaling was confirmed. This provides further evidence that fluids with quenched disorder belong to the universality class of the random-field Ising model.Comment: sent to J. Phys. Cond. Mat

    An explanation for the curious mass loss history of massive stars: from OB stars, through Luminous Blue Variables to Wolf-Rayet stars

    Get PDF
    The stellar winds of massive stars show large changes in mass-loss rates and terminal velocities during their evolution from O-star through the Luminous Blue Variable phase to the Wolf-Rayet phase. The luminosity remains approximately unchanged during these phases. These large changes in wind properties are explained in the context of the radiation driven wind theory, of which we consider four different models. They are due to the evolutionary changes in radius, gravity and surface composition and to the change from optically thin (in continuum) line driven winds to optically thick radiation driven winds.Comment: Accepted for publication in Astronomy and Astrophysics (Letter to the Editor

    Small-Scale X-ray Variability in the Cassiopeia A Supernova Remnant

    Get PDF
    A comparison of X-ray observations of the Cassiopeia A supernova remnant taken in 2000, 2002, and 2004 with the Chandra ACIS-S3 reveals the presence of several small scale features (<= 10 arcsec) which exhibit significant intensity changes over a 4 year time frame. Here we report on the variability of six features, four of which show count rate increases from ~ 10% to over 90%, and two which show decreases of ~ 30% -- 40%. While extracted 1-4.5 keV X-ray spectra do not reveal gross changes in emission line strengths, spectral fits using non-equilibrium ionization, metal-rich plasma models indicate increased or decreased electron temperatures for features showing increasing or decreasing count rates, respectively. Based on the observed count rate changes and the assumption that the freely expanding ejecta has a velocity of ~ 5000 km/s at the reverse shock front, we estimate the unshocked ejecta to have spatial scale variations of 0.02 - 0.03 pc, which is consistent with the X-ray emitting ejecta belonging to a more diffuse component of the supernova ejecta than that seen in the optically emitting ejecta, which have spatial scales ~ 0.001 pc.Comment: 9 pages, 8 figures, to be published in Astronomical Journa

    A numerical test of the continuum index theorem on the lattice

    Get PDF
    The overlap formalism of chiral fermions provides a tool to measure the index, Q, of the chiral Dirac operator in a fixed gauge field background on the lattice. This enables a numerical measurement of the probability distribution, p(Q), in Yang-Mills theories. We have obtained an estimate for p(Q) in pure SU(2) gauge theory by measuring Q on 140 independent gauge field configurations generated on a 12^4 lattice using the standard single plaquette Wilson action at a coupling of beta=2.4. This distribution is in good agreement with a recent measurement [8] of the distribution of the topological charge on the same lattice using the same coupling and the same lattice gauge action. In particular we find =3.3(4) to be compared with = 3.9(5) found in [8]. The good agreement between the two distributions is an indication that the continuum index theorem can be carried over in a probabilistic sense on to the lattice.Comment: 17 pages, 5 figures, plain TeX, uses eps

    A cryogenic amplifier for fast real-time detection of single-electron tunneling

    Full text link
    We employ a cryogenic High Electron Mobility Transistor (HEMT) amplifier to increase the bandwidth of a charge detection setup with a quantum point contact (QPC) charge sensor. The HEMT is operating at 1K and the circuit has a bandwidth of 1 MHz. The noise contribution of the HEMT at high frequencies is only a few times higher than that of the QPC shot noise. We use this setup to monitor single-electron tunneling to and from an adjacent quantum dot and we measure fluctuations in the dot occupation as short as 400 nanoseconds, 20 times faster than in previous work.Comment: 4 pages, 3 figure

    Laplacian gauge and instantons

    Get PDF
    We exhibit the connection between local gauge singularities in the Laplacian gauge and topological charge, which opens the possibility of studying instanton excitations without cooling. We describe our version of Laplacian gauge-fixing for SU(N).Comment: Lattice 2000 (Topology and Vacuum), 4 pages, 3 figures -- cosmetic change
    • 

    corecore