3,553 research outputs found

    Fluids with quenched disorder: Scaling of the free energy barrier near critical points

    Full text link
    In the context of Monte Carlo simulations, the analysis of the probability distribution PL(m)P_L(m) of the order parameter mm, as obtained in simulation boxes of finite linear extension LL, allows for an easy estimation of the location of the critical point and the critical exponents. For Ising-like systems without quenched disorder, PL(m)P_L(m) becomes scale invariant at the critical point, where it assumes a characteristic bimodal shape featuring two overlapping peaks. In particular, the ratio between the value of PL(m)P_L(m) at the peaks (PL,maxP_{L, max}) and the value at the minimum in-between (PL,minP_{L, min}) becomes LL-independent at criticality. However, for Ising-like systems with quenched random fields, we argue that instead ΔFL:=ln(PL,max/PL,min)Lθ\Delta F_L := \ln (P_{L, max} / P_{L, min}) \propto L^\theta should be observed, where θ>0\theta>0 is the "violation of hyperscaling" exponent. Since θ\theta is substantially non-zero, the scaling of ΔFL\Delta F_L with system size should be easily detectable in simulations. For two fluid models with quenched disorder, ΔFL\Delta F_L versus LL was measured, and the expected scaling was confirmed. This provides further evidence that fluids with quenched disorder belong to the universality class of the random-field Ising model.Comment: sent to J. Phys. Cond. Mat

    The main transition in the Pink membrane model: finite-size scaling and the influence of surface roughness

    Full text link
    We consider the main transition in single-component membranes using computer simulations of the Pink model [D. Pink {\it et al.}, Biochemistry {\bf 19}, 349 (1980)]. We first show that the accepted parameters of the Pink model yield a main transition temperature that is systematically below experimental values. This resolves an issue that was first pointed out by Corvera and co-workers [Phys. Rev. E {\bf 47}, 696 (1993)]. In order to yield the correct transition temperature, the strength of the van der Waals coupling in the Pink model must be increased; by using finite-size scaling, a set of optimal values is proposed. We also provide finite-size scaling evidence that the Pink model belongs to the universality class of the two-dimensional Ising model. This finding holds irrespective of the number of conformational states. Finally, we address the main transition in the presence of quenched disorder, which may arise in situations where the membrane is deposited on a rough support. In this case, we observe a stable multi-domain structure of gel and fluid domains, and the absence of a sharp transition in the thermodynamic limit.Comment: submitted to PR

    The Extraordinarily Rapid Expansion of the X-ray Remnant of Kepler's Supernova (SN1604)

    Get PDF
    Four individual high resolution X-ray images from ROSAT and the Einstein Observatory have been used to measure the expansion rate of the remnant of Kepler's supernova (SN 1604). Highly significant measurements of the expansion have been made for time baselines varying from 5.5 yrs to 17.5 yrs. All measurements are consistent with a current expansion rate averaged over the entire remnant of 0.239 (+/-0.015) (+0.017,-0.010) % per yr, which, when combined with the known age of the remnant, determines the expansion parameter m, defined as RtmR\propto t^m, to be 0.93 (+/-0.06) (+0.07,-0.04). The error bars on these results include both statistical (first set of errors) and systematic (second set) uncertainty. According to this result the X-ray remnant is expanding at a rate that is remarkably close to free expansion and nearly twice as fast as the mean expansion rate of the radio remnant. The expansion rates as a function of radius and azimuthal angle are also presented based on two ROSAT images that were registered to an accuracy better than 0.5 arcseconds. Significant radial and azimuthal variations that appear to arise from the motion of individual X-ray knots are seen. The high expansion rate of the X-ray remnant appears to be inconsistent with currently accepted dynamical models for the evolution of Kepler's SNR.Comment: 14 pages, including 7 postscript figs, LaTeX, emulateapj. Accepted by Ap

    Configurational entropy of network-forming materials

    Full text link
    We present a computationally efficient method to calculate the configurational entropy of network-forming materials. The method requires only the atomic coordinates and bonds of a single well-relaxed configuration. This is in contrast to the multiple simulations that are required for other methods to determine entropy, such as thermodynamic integration. We use our method to obtain the configurational entropy of well-relaxed networks of amorphous silicon and vitreous silica. For these materials we find configurational entropies of 1.02 kb and 0.97 kb per silicon atom, respectively, with kb the Boltzmann constant.Comment: 4 pages, 4 figure

    Accurate description of bulk and interfacial properties in colloid-polymer mixtures

    Full text link
    Large-scale Monte Carlo simulations of a phase-separating colloid-polymer mixture are performed and compared to recent experiments. The approach is based on effective interaction potentials in which the central monomers of self-avoiding polymer chains are used as effective coordinates. By incorporating polymer nonideality together with soft colloid-polymer repulsion, the predicted binodal is in excellent agreement with recent experiments. In addition, the interfacial tension as well as the capillary length are in quantitative agreement with experimental results obtained at a number of points in the phase-coexistence region, without the use of any fit parametersComment: 4 pages, 4 figure

    Critical behavior in colloid-polymer mixtures: theory and simulation

    Full text link
    We extensively investigated the critical behavior of mixtures of colloids and polymers via the two-component Asakura-Oosawa model and its reduction to a one-component colloidal fluid using accurate theoretical and simulation techniques. In particular the theoretical approach, hierarchical reference theory [Adv. Phys. 44, 211 (1995)], incorporates realistically the effects of long-range fluctuations on phase separation giving exponents which differ strongly from their mean-field values, and are in good agreement with those of the three-dimensional Ising model. Computer simulations combined with finite-size scaling analysis confirm the Ising universality and the accuracy of the theory, although some discrepancy in the location of the critical point between one-component and full-mixture description remains. To assess the limit of the pair-interaction description, we compare one-component and two-component results.Comment: 15 pages, 10 figures. Submitted to Phys. Rev.

    First constraints on the magnetic field strength in extra-Galactic stars: FORS2 observations of Of?p stars in the Magellanic Clouds

    Get PDF
    Massive O-type stars play a dominant role in our Universe, but many of their properties remain poorly constrained. In the last decade magnetic fields have been detected in all Galactic members of the distinctive Of?p class, opening the door to a better knowledge of all O-type stars. With the aim of extending the study of magnetic massive stars to nearby galaxies, to better understand the role of metallicity in the formation of their magnetic fields and magnetospheres, and to broaden our knowledge of the role of magnetic fields in massive star evolution, we have carried out spectropolarimetry of five extra-Galactic Of?p stars, as well as a couple of dozen neighbouring stars. We have been able to measure magnetic fields with typical error bars from 0.2 to 1.0 kG, depending on the apparent magnitude and on weather conditions. No magnetic field has been firmly detected in any of our measurements, but we have been able to estimate upper limits to the field values of our target stars. One of our targets, 2dFS 936, exhibited an unexpected strengthening of emission lines. We confirm the unusual behaviour of BI 57, which exhibits a 787 d period with two photometric peaks and one spectroscopic maximum. The observed strengthening of the emission lines of 2dFS 936, and the lack of detection of a strong magnetic field in a star with such strong emission lines is at odd with expectations. Together with the unusual periodic behaviour of BI 57, it represents a challenge for the current models of Of?p stars. The limited precision that we obtained in our field measurements (in most cases as a consequence of poor weather) has led to field-strength upper limits that are substantially larger than those typically measured in Galactic magnetic O stars. Further higher precision observations and monitoring are clearly required.Comment: Accepted by A&
    corecore