We present a computationally efficient method to calculate the
configurational entropy of network-forming materials. The method requires only
the atomic coordinates and bonds of a single well-relaxed configuration. This
is in contrast to the multiple simulations that are required for other methods
to determine entropy, such as thermodynamic integration. We use our method to
obtain the configurational entropy of well-relaxed networks of amorphous
silicon and vitreous silica. For these materials we find configurational
entropies of 1.02 kb and 0.97 kb per silicon atom, respectively, with kb the
Boltzmann constant.Comment: 4 pages, 4 figure