142 research outputs found

    Volcanic soils and landslides: a case study of the island of Ischia (southern Italy) and its relationship with other Campania events

    Get PDF
    Abstract. An integrated investigation was carried out on the volcanic soils involved in the landslide phenomena that occurred in 2006 at Mt. Vezzi on the island of Ischia (southern Italy). Chemical (soil pH, organic carbon content, exchangeable cations and cation exchange capacity, electrical conductivity, Na adsorption ratio and Al, Fe and Si forms), physical (particle and pore size distribution, pore structure), hydrological (soil water retention, saturated and unsaturated hydraulic conductivity), mineralogical and micromorphological analyses were carried out for three soil profiles selected in two of the main head scarps. The studied soils showed a substantial abrupt discontinuity in all the studied properties at the interface with a buried fine ash layer (namely, the 2C horizon), that was only marginally involved in the sliding surface of the landslide phenomena. When compared to the overlying horizons, 2C showed (i) fine grey ash that is almost pumice free, with the silt content increasing by 20 %; (ii) ks values 1 order of magnitude lower; (iii) a pore distribution concentrated into small (15–30 ÎŒm modal class) pores characterised by a very low percolation threshold (approximately 15–25 ÎŒm); (iv) the presence of expandable clay minerals; and (v) increasing Na content in the exchange complex. Most of these properties indicated that 2C was a lower permeability horizon compared to the overlying ones. Nevertheless, it was possible to assume this interface to be an impeding layer to vertical water fluxes only by the identification of a thin (6.5 mm) finely stratified ash layer, on top of 2C, and of the hydromorphic features (e.g. Fe / Mn concretions) within and on top of the layer. Although Mt. Vezzi's soil environment has many properties in common with those of other Campania debris-mudflows (e.g. high gradient, north-facing slope, similar forestry, and volcanic origin of the parent material), the results of this study suggest a more complex relationship between soil properties and landslides and emphasise the role of vertical discontinuities as noteworthy predisposing factors

    Mars Regolith Simulant Ameliorated by Compost as In Situ Cultivation Substrate Improves Lettuce Growth and Nutritional Aspects

    Get PDF
    Heavy payloads in future shuttle journeys to Mars present limiting factors, making self-sustenance essential for future colonies. Therefore, in situ resources utilization (ISRU) is the path to successful and feasible space voyages. This research frames the concept of planting leafy vegetables on Mars regolith simulant, ameliorating this substrate’s fertility by the addition of organic residues produced in situ. For this purpose, two butterhead lettuce (Lactuca sativa L. var. capitata) cultivars (green and red Salanova¼) were chosen to be cultivated in four dierent mixtures of MMS-1 Mojave Mars simulant:compost (0:100, 30:70, 70:30 and 100:0; v:v) in a phytotron open gas exchange growth chamber. The impact of compost rate on both crop performance and the nutritive value of green- and red-pigmented cultivars was assessed. The 30:70 mixture proved to be optimal in terms of crop performance, photosynthetic activity, intrinsic water use eciency and quality traits of lettuce. In particular, red Salanova¼ showed the best performance in terms of these quality traits, registering 32% more phenolic content in comparison to 100% simulant. Nonetheless, the 70:30 mixture represents a more realistic scenario when taking into consideration the sustainable use of compost as a limited resource in space farming, while still accepting a slight significant decline in yield and quality in comparison to the 30:70 mixture

    Myocardial extracellular volume fraction to differentiate healthy from cardiomyopathic myocardium using dual-source dual-energy CT

    Get PDF
    Objective: To evaluate the feasibility of dual-energy CT (DECT)-based iodine quantification to estimate myocardial extracellular volume (ECV) fraction in patients with and without cardiomyopathy (CM), as well as to assess its ability to distinguish healthy myocardial tissue from cardiomyopathic, with the goal of defining a threshold ECV value for disease detection. Methods: Ten subjects free of heart disease and 60 patients with CM (mean age 66.4 ± 9.4; 59 males and 11 females; 40 ischemic and 20 non-ischemic CM) underwent late iodine enhanced DECT imaging. Myocardial iodine maps were obtained using 3-material decomposition. ECV of the left ventricle was estimated from hematocrit levels and the iodine maps using the AHA 16-segment model. Receiver operating characteristic curve analysis was performed, with corresponding area under the curve, along with Youden's index assessment, to establish a threshold for CM detection. Results: The median ECV for healthy myocardium, non-ischemic CM, and ischemic CM were 25.4% (22.9–27.3), 38.3% (33.7–43.0), and 36.9% (32.4–41.1), respectively. Healthy myocardium showed significantly lower ECV values compared to ischemic and non-ischemic CM (p 29.5% would indicate the presence of CM in the myocardium (sensitivity = 90.3; specificity = 90.3); the AUC for this criterion was 0.950 (p < 0.001). Conclusion: The findings of this study resulted in a statistically significant distinction between healthy myocardium and CM ECVs. This led to the establishment of a promising threshold ECV value that could facilitate the differentiation between healthy and diseased myocardium, and highlights the potential of this DECT methodology to detect cardiomyopathic tissue

    Pulmonary squamous cell carcinoma with lepidic growth pattern : new insights into lung cancer classification

    Get PDF
    Lung squamous cell carcinoma (SCC) has always been considered a monomorphic entity, different from lung adenocarcinoma which is known to be a very heterogeneous tumor from morphological and molecular point of view. Just two histological subtypes of SCC are recognised, the basaloid and lymphoepithelioma-like histotypes, as in other sites different from the lung. Recently, different studies tried to expand the classification of SCC by adding different subtypes based on morphological characteristics (such as keratinization or clear cell features) or different growth patterns (papillary or basaloid). We report a case of squamous cell carcinoma with a previously unreported, distinctive and predominant "lepidic" growth pattern, with its immunophenotypical and molecular characterization

    Prognostic implications of residual disease tumor-infiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy

    Get PDF
    Abstract Background For primary triple-negative breast cancer (TNBC) treated with neoadjuvant chemotherapy (NAC), higher pretreatment tumor-infiltrating lymphocytes (TILs) correlates with increased pathologic complete response (pCR) rates, and improved survival. We evaluated the added prognostic value of residual disease (RD) TILs to residual cancer burden (RCB) in predicting survival post-NAC. Patients and methods We combined four TNBC NAC patient cohorts who did not achieve pCR. RD TILs were investigated for associations with recurrence-free survival (RFS), and overall survival (OS) using Cox models with stromal TILs as a continuous variable (per 10% increment). The likelihood ratio test was used to evaluate added prognostic value of RD TILs. Results A total of 375 RD TNBC samples were evaluable for TILs and RCB. The median age was 50 years, with 62% receiving anthracycline/taxane chemotherapy. The RCB class after NAC was 11%, 50%, and 39% for I, II, and III, respectively. The median RD TIL level was 20% (IQR 10–40). There was a positive correlation between RD TIL levels and CD8+ T-cell density (ρ = 0.41). TIL levels were significantly lower with increasing post-NAC tumor (P = 0.005), nodal stage (P = 0.032), but did not differ by RCB class (P = 0.84). Higher RD TILs were significantly associated with improved RFS (HR: 0.86; 95% CI 0.79–0.92; P  Conclusions TIL levels in TNBC RD are significantly associated with improved RFS and OS and add further prognostic information to RCB class, particularly in RCB class II

    A Web-based spatial decision supporting system for land management and soil conservation

    Get PDF
    Abstract. Today it is evident that there are many contrasting demands on our landscape (e.g. food security, more sustainable agriculture, higher income in rural areas, etc.) as well as many land degradation problems. It has been proved that providing operational answers to these demands and problems is extremely difficult. Here we aim to demonstrate that a spatial decision support system based on geospatial cyberinfrastructure (GCI) can address all of the above, so producing a smart system for supporting decision making for agriculture, forestry, and urban planning with respect to the landscape. In this paper, we discuss methods and results of a special kind of GCI architecture, one that is highly focused on land management and soil conservation. The system allows us to obtain dynamic, multidisciplinary, multiscale, and multifunctional answers to agriculture, forestry, and urban planning issues through the Web. The system has been applied to and tested in an area of about 20 000 ha in the south of Italy, within the framework of a European LIFE+ project (SOILCONSWEB). The paper reports – as a case study – results from two different applications dealing with agriculture (olive growth tool) and environmental protection (soil capability to protect groundwater). Developed with the help of end users, the system is starting to be adopted by local communities. The system indirectly explores a change of paradigm for soil and landscape scientists. Indeed, the potential benefit is shown of overcoming current disciplinary fragmentation over landscape issues by offering – through a smart Web-based system – truly integrated geospatial knowledge that may be directly and freely used by any end user (www.landconsultingweb.eu). This may help bridge the last very important divide between scientists working on the landscape and end users

    Cancer Associated Fibroblasts and Senescent Thyroid Cells in the Invasive Front of Thyroid Carcinoma

    Get PDF
    Thyroid carcinoma (TC) comprises several histotypes with different aggressiveness, from well (papillary carcinoma, PTC) to less differentiated forms (poorly differentiated and anaplastic thyroid carcinoma, PDTC and ATC, respectively). Previous reports have suggested a functional role for cancer-associated fibroblasts (CAFs) or senescent TC cells in the progression of PTC. In this study, we investigated the presence of CAFs and senescent cells in proprietary human TCs including PTC, PDTC, and ATC. Screening for the driving lesions BRAFV600E and N/H/KRAS mutations, and gene fusions was also performed to correlate results with tumor genotype. In samples with unidentified drivers, transcriptomic profiles were used to establish a BRAF- or RAS-like molecular subtype based on a gene signature derived from The Cancer Genome Atlas. By using immunohistochemistry, we found co-occurrence of stromal CAFs and senescent TC cells at the tumor invasive front, where deposition of collagen (COL1A1) and expression of lysyl oxidase (LOX) enzyme were also detected, in association with features of local invasion. Concurrent high expression of CAFs and of the senescent TC cells markers, COL1A1 and LOX was confirmed in different TC histotypes in proprietary and public gene sets derived from Gene Expression Omnibus (GEO) repository, and especially in BRAF mutated or BRAF-like tumors. In this study, we show that CAFs and senescent TC cells co-occur in various histotypes of BRAF-driven thyroid tumors and localize at the tumor invasive front

    From theory to the complex geospatial ground-truth of contaminated soils.

    Get PDF
    Characterization and subsequent reclamation of contaminated sites require detailed knowledge of the geospatial distribution of contamination. In Italy, a potentially contaminated site is an area where the concentration of one or more contaminants in soils is above land-use legal limits (CSC according to Italian law 152/06). Four main phases have to be followed to assess contamination and then reclamation: 1) preliminary conceptual model, 2) characterization plan, 3) site specific risk analysis (by Risk-net software) setting the contamination threshold concentration (CSR), 4) assessment of contamination and therefore reclamation action by comparison between CSC and CSR. The geospatial distribution of contaminants is considered in the characterization plan. It is mandatory to sample at least three samples for each surveyed point (one sample in the 0 to 1 m depth, one sample in the capillary fringe zone and one in between). There aren’t clear indications on the sampling strategy and spatial density. According to Italian law (D.M. 471/99), it is usual to identify 5 to 15 sampling points for areas of 1 to 5 hectares. In this work we attempt to answer the question: “After more than a decade from the introduction of law 152/06 and considering the progress of scientific knowledge, are these soil sampling criteria suitable for assessing the spatial and volumetric distribution of site contamination? We considered the analytical and spatial dataset obtained from two rural and industrial potentially polluted sites of south Italy, formerly interested by past disposal of industrial sludge and wastes. In both sites results showed that: (i) the geospatial variability of contamination is always much more complex than expected and depends by the history of the contamination; (ii) the sampling of the first meter - as a single body - is not satisfactory because it does not take into account the real vertical distribution of pollutants and the soil stratigraphy (such as the presence of centimeter horizons). The work illustrates the use of proximal sensing sensors, such as EMI, ARP, portable gamma-ray spectrometers and portable XRFs to obtain detailed mappings for homogeneous areas identification, where to address subsequent pedological and chemical investigations. Moreover, the pedological observation - guided by these technologies - often provides essential information to understand the process of emplacement and possible migration of pollutants towards other environmental sectors. The applied integrated approach, which was found very relevant for the site characterization, can assume even greater importance in the subsequent phase of reclamation

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting
    • 

    corecore