24 research outputs found

    Food for thought: Dietary nootropics for the optimisation of military operators cognitive performance

    Get PDF
    Nootropics are compounds that enhance cognitive performance and have been highlighted as a medium-term human augmentation technology that could support soldier performance. Given the differing ethical, safety, and legal considerations associated with the pharmaceutical subset of nootropics, this analysis focuses on dietary supplementation which may enhance cognition during training and operations. Numerous supplements have been investigated as possible nootropics, however research is often not context specific or of high quality, leading to questions regarding efficacy. There are many other complex cofactors that may affect the efficacy of any dietary nootropic supplement which is designed to improve cognition, such as external stressors (e.g., sleep deprivation, high physical workloads), task specifics (e.g., cognitive processes required), and other psychological constructs (e.g., placebo/nocebo effect). Moreover, military population considerations, such as prior nutritional knowledge and current supplement consumption (e.g., caffeine), along with other issues such as supplement contamination should be evaluated when considering dietary nootropic use within military populations. However, given the increasing requirement for cognitive capabilities by military personnel to complete role-related tasks, dietary nootropics could be highly beneficial in specific contexts. Whilst current evidence is broadly weak, nutritional nootropic supplements may be of most use to the military end user, during periods of high military specific stress. Currently, caffeine and L-tyrosine are the leading nootropic supplements candidates within the military context. Future military specific research on nootropics should be of high quality and use externally valid methodologies to maximise the translation of research to practice

    Transferability of Military-Specific Cognitive Research to Military Training and Operations

    Get PDF
    The influence of acute aerobic exercise on cognitive function is well documented (e.g., Lambourne and Tomporowski, 2010; Chang et al., 2012). However, the influence of military specific exercise on aspects of cognitive function relevant to military operations is less well understood. With the increasing physical and cognitive loads placed on military personnel (Mahoney et al., 2007), this interaction is fundamental to understanding operational performance (Russo et al., 2005). As such, ensuring the transferability of military-specific cognitive research to military training and operations, is of great importance, particularly for the development of both mitigation and enhancement strategies (see Brunyé et al., 2020). Despite this, studies have not always considered whether meaningful translations can be made. We suggest that researchers should endeavor to strike the balance between external validity and experimental control (Figure 1), and consider the concept of representative design (Pinder et al., 2011). External validity refers to the transferability of research findings from the research to the target population, whilst representative design refers to methodological approaches chosen to ensure that the experimental task constraints characterize those experienced during performance (i.e., the training or operational environment) (Pinder et al., 2011). Herein, we will focus on representative design during load carriage investigations, due to its mission criticality (Knapik and Reynolds, 2012), and it being the primary physical activity choice during military specific exercise-cognition research. Specifically, we discuss the inclusion of dual-/multi-tasking, implications of study population, cognitive task selection, and the data collection environment

    The Development, and Day-to-Day Variation, of a Military-Specific Auditory N-Back Task and Shoot-/Don’t-Shoot Task

    Get PDF
    During military operations, soldiers are required to successfully complete numerous physical and cognitive tasks concurrently. Understanding the typical variance in research tools that may be used to provide insight into the interrelationship between physical and cognitive performance is therefore highly important. This study assessed the inter-day variability of two military-specific cognitive assessments; a Military-Specific Auditory N-Back Task (MSANT) and a Shoot-/Don’t-Shoot Task (SDST) in 28 participants. Limits of agreement ± 95% Confidence Intervals, Standard Error of the Mean, and Smallest Detectable Change were calculated to quantify the typical variance in task performance. All parameters within the MSANT and SDST demonstrated no mean difference for trial visit in either the seated or walking condition, with equivalency demonstrated for the majority of comparisons. Collectively, these data provided an indication of the typical variance in MSANT and SDST performance, whilst demonstrating that both assessments can be used during seated and walking conditions

    Metabolic, cardiovascular, neuromuscular, and perceptual responses to repeated military-1 specific load carriage treadmill simulations

    Get PDF
    Bouts of military load carriage are rarely completed in isolation; however, limited research has investigated the physiological responses to repeated load carriage tasks. Twelve civilian men (age, 28 ± 8 years; stature, 185.6 ± 5.8 cm; body mass 84.3 ± 11.1 kg and maximal oxygen uptake, 51.5 ± 6.4 mL·kg-1 min-1) attended the laboratory on two occasions to undertake a familiarisation and an experimental session. Following their familiarisation session, participants completed three bouts of a fast load carriage protocol (FLCP; ∼65 min), carrying 25 kg, interspersed with a 65-min recovery period. Physiological strain (oxygen uptake [V̇O2] and heart rate [HR]) was assessed during the FLCP bouts, and physical performance assessments (weighted counter-movement jump [wCMJ], maximal isometric voluntary contraction of the quadriceps [MIVC] and seated medicine ball throw [SMBT]) was measured pre and post each FLCP bout. A main effect for bout and measurement time was evident for V̇O2 and HR (both p < 0.001 and Ѡ2 = 0.103-0.816). There was no likely change in SMBT distance (p = 0.201 and Ѡ2 = 0.004), but MIVC peak force reduced by approximately 25% across measurement points (p < 0.001 and Ѡ2 = 0.133). A mean percentage change of approximately -12% from initial values was also evident for peak wCMJ height (p = 0.001 and Ѡ2 = 0.028). Collectively, these data demonstrate that repeated FLCP bouts result in an elevated physiological strain for each successive bout, along with a substantial reduction in lower body power (wCMJ and MIVC). Therefore, future research should investigate possible mitigation strategies to maintain role-related capability

    Three principles for the progress of immersive technologies in healthcare training and education

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore