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Introduction 26 

The influence of acute aerobic exercise on cognitive function is well documented (e.g. 27 

Lambourne and Tomporowski, 2010; Chang et al., 2012). However, the influence of military specific 28 

exercise on aspects of cognitive function relevant to military operations is less well understood. With 29 

the increasing physical and cognitive loads placed on military personnel (Mahoney et al., 2007), this 30 

interaction is fundamental to understanding operational performance (Russo et al., 2005). As such, 31 

ensuring the transferability of military specific cognitive research to military training and operations, is 32 

of great importance, particularly for the development of both mitigation and enhancement strategies 33 

(see Brunyé et al., 2020). Despite this, studies have not always considered whether meaningful 34 

translations can be made. We suggest that researchers should endeavour to strike the balance between 35 

external validity and experimental control (Figure 1), and consider the concept of representative design 36 

(Pinder, Davids, Renshaw, & Araújo, 2011). External validity refers to the transferability of research 37 

findings from the research to the target population, whilst representative design refers to methodological 38 

approaches chosen to ensure that the experimental task constraints characterise those experienced 39 

during performance (i.e. the training or operational environment) (Pinder et al., 2011). Herein, we will 40 

focus on representative design during load carriage investigations, due to its mission criticality (Knapik, 41 

Reynolds, Santee, & Friedl, 2012), and it being the primary physical activity choice during military 42 

specific exercise-cognition research. Specifically, we discuss the inclusion of dual-/multi-tasking, 43 

implications of study population, cognitive task selection, and the data collection environment. 44 

*** Insert Figure 1 near here *** 45 

Inclusion of Dual-/Multi-tasking 46 

The number of tasks presented, and when performance in these tasks is measured is crucial for 47 

representative design and external validity respectively. During operations, combatants are required to 48 

complete numerous physical and cognitive tasks concurrently; termed dual-/multi-tasking (Pellecchia, 49 

2005). For example, during load carriage soldiers are required to simultaneously maintain situational 50 

awareness, whilst monitoring auditory and visual stimuli (Kobus et al., 2010). This additive effect 51 



increases cognitive demands; a result of task demands and the required coordination processes (Son et 52 

al., 2019). As such, the ability to manage the interference of, and switching between, conflicting tasks 53 

is of high importance during dual-/multi-task performance (Fallahtafti et al., 2020). Failure to do so can 54 

result in a performance decrement; termed the dual-task interference effect (Schmidt and Lee, 2013). 55 

A number of load carriage focused studies, assessing cognitive function, have used a pre-/post-56 

load carriage cognitive assessment methodology (Bhattacharyya, Pal, Chatterjee, & Majumdar, 2017; 57 

Knapik et al., 1997). Importantly, this pre-/post-load carriage methodology solely provides cognitive 58 

performance information at the instance of testing, and not during the load carriage tasks itself. This 59 

information during a load carriage task is of particular interest given that such tasks are often protracted 60 

in nature (e.g. 30 minutes to 18 hours; Vine et al., 2017). The importance of within task assessment is 61 

evidenced by a number of studies. For example, Eddy et al. (2015), observed an increase in false alarms 62 

(auditory go/no-go task) in a loaded (40 kg) compared to an unloaded condition. However, across six 63 

time points, this only occurred in the third, fourth, and fifth. Similarly, Kobus et al. (2010) observed 64 

differences in percentage hit rate (detection and identification task) across all assessment time points in 65 

each of the three load conditions (0 vs. 45.5 vs. 61.2 kg). Whilst no pre-/post-load carriage comparisons 66 

were made in either study, Eddy et al. (2015) observed no difference between load conditions (0 vs 40 67 

kg) at either the first or last assessment point, suggesting differences could have been missed had a pre-68 

/post-comparison been used. It has also been suggested that there is often sufficient recovery, post-69 

physical task, for individuals to manage their cognitive resources, enabling the successful completion 70 

of the cognitive assessments (Mahoney et al., 2007). Finally, from a representative design perspective, 71 

military physical tasks are rarely discrete entities, and are undertaken with numerous interacting 72 

constraints and transitions between tasks. Therefore, within task measurements are of far more practical 73 

importance than those obtained once the task is complete. Consequently, where possible, it is key that 74 

studies undertake a dual-task approach, as they provide both more operationally relevant outcomes and 75 

provide greater granularity to the evidence base. 76 

 77 

Implications of Study Population 78 



When considering the transfer of research findings to training and operations considerations should 79 

be given to study populations. Military personnel undergo extensive training and rehearsal to be able to 80 

execute their missions successfully (Nindl et al., 2013). Through these preparatory efforts, military 81 

specific exercise-cognition interaction effects are likely to be positively attenuated as a consequence of 82 

cognitive load reduction. Training will beneficially alter combatants’ perceptions of factors including 83 

physical exertion, comfort, and task difficulty; in turn likely reducing cognitive load. For example, 84 

following heat adaptation, an individual’s perception of physical exertion and thermal sensation, whilst 85 

exercising at high temperatures, are reduced (Tyler et al., 2016). Without this heat adaption, perceived 86 

exertion and thermal discomfort would increase, likely leading to irrelevant distractor processing, and 87 

a reduction in cognitive function (see Load Theory: Lavie, 2010; Lavie, Hirst, De Fockert, & Viding, 88 

2004).  89 

The interaction between cognitive assessment selection and study population is also likely to impact 90 

the subsequent outcomes, again by altering cognitive load. Specifically, whether the cognitive task 91 

completion requires either implicit or explicit processes is likely to impact the magnitude of 92 

performance change (Dietrich and Audiffren, 2011). Whilst, the distinction between these processes is 93 

greatly contested, and often more complex than assumed (De Houwer and Moors, 2007), broadly, the 94 

former relates to automated processing, whilst the latter refers to conscious processing. Therefore, with 95 

greater task familiarity, experienced personnel are likely to employ more automated processes 96 

compared with a novice, this is turn is likely to reduce the magnitude of possible performance 97 

attenuation (Martin et al., 2019). 98 

Finally, a key critique of the exercise-cognition literature by McMorris (2016) relates to the 99 

inadequacies of reporting exercise intensities within studies. Previously, McMorris and Hale (2012), 100 

have suggested the use of low (< 40% maximal oxygen uptake [V̇O2max]), medium (≥40-<80% V̇O2max), 101 

and heavy (≥80% V̇O2max) domains for describing exercise intensities; which were adapted from Borer's 102 

(2003) categories. Importantly for exercise-cognition research, these boundaries were designed to 103 

coincide with key catecholamine and hypothalamic–pituitary–adrenal axis hormone thresholds. 104 

However, training status and testing modality are likely to influence the occurrence of these 105 



physiological thresholds relative to maximal capacities (e.g. V̇O2max or maximum work rate) (Jamnick 106 

et al., 2020). Consequently, it appears that the use of physiological parameters, such as ventilatory and 107 

lactate thresholds are preferable compared with maximal capacities when describing exercise intensities 108 

(e.g. Podolin, Munger, & Mazzeo, 1991). 109 

Collectively these factors highlight plausible differences between study populations. It is however 110 

important to note that access to military personnel can be difficult. In these cases, careful control of 111 

population characteristics (e.g. similar fitness levels) and ensuring thorough familiarisation (both to the 112 

physical and cognitive tasks, along with clothing and protocols) is imperative for minimising 113 

differences between novice and expert populations, and in turn ensuring the maximum transferability 114 

of findings. Moreover, whilst beyond the scope of this piece, it is important to also acknowledge that 115 

military performance is fundamentally a result of team performance (Shuffler et al., 2012; Billing et al., 116 

2020), thus additional factors may impact performance outcomes beyond those investigated within 117 

individual based research (e.g. group cohesion). 118 

 119 

Cognitive Task Selection 120 

When developing representative research paradigms, which aim to enhance transferability of 121 

findings, there is a need for clear consideration when selecting cognitive tasks. Within the military 122 

specific exercise-cognition literature a variety of cognitive assessment approaches have been employed; 123 

from ‘basic’ non-military specific-assessment (e.g. computer based work tasks; Bhattacharyya et al., 124 

2017; Knapik et al., 1997) to more externally valid military specific assessments (e.g. military specific 125 

go-/no-go task; Eddy et al., 2015; Giles, Hasselquist, Caruso, & Eddy, 2019). With regards to ‘basic’ 126 

non-military assessments, these typically isolate individual aspects of cognitive function, which differs 127 

from multicomponent requirements placed upon combatants during military operations (Vine, Coakley, 128 

Myers, Blacker, & Runswick, 2020). In addition, cognitive task selection is likely to have a direct 129 

impact on the magnitude and direction of a performance change. Therefore, it is crucial that the 130 

cognitive tasks selected match operational task demands. Moreover, whilst limitations to study size and 131 



task selection may exist, Vine et al. (2020) demonstrated poor to no correlation between ‘basic’ and 132 

military specific cognitive assessments. This suggests that either different cognitive processes are being 133 

assessed, or more likely, that the complexity of a military task requires numerous cognitive processes 134 

to be simultaneously executed. Further cementing the importance of opting for externally valid 135 

cognitive assessment methods. 136 

When choosing a cognitive assessment, another factor to consider is the differing exercise-137 

cognition responses for a given type of cognitive assessment. For example, in a meta-analysis by 138 

McMorris and Hale (2012), the authors highlighted differing effect sizes for exercise on speed and 139 

accuracy focused tasks. Critically, as both parameters are imperative for military operators, it is 140 

important to assess both during military focused research. In addition to this, external validity can be 141 

enhanced by selecting cognitive tasks that would be concurrently completed during the physical task of 142 

choice. For example, the demands of a visual shoot/don’t-shoot (Kobus et al., 2010; Armstrong et al., 143 

2017) or audible go/no-go (Eddy et al., 2015; Armstrong et al., 2017; Giles et al., 2019) task reflect 144 

those that would be reasonable to expect during load carriage. Finally, due to the nature of military 145 

operations, physical taskings are rarely discrete in nature, but instead form a larger, more varied and 146 

often continuous work schedule. Due to repeatability being a limitation of representative design, 147 

quantifying the magnitude of both day-to-day and within-day variance, is a critical step in obtaining 148 

meaningful data in these scenarios. However, only a single study has reported the variance in 149 

performance of military specific cognitive assessments (Vine et al., 2020). Collectively, these points 150 

demonstrate the importance of employing military specific cognitive assessments in order to ensure the 151 

transferability of findings to military operations. 152 

 153 

Data Collection Environment  154 

Combatants are required to operate effectively under a multitude of environmental constraints (e.g. 155 

mountainous, urban) with many of these providing additional challenges for military researchers. 156 

However, these additional environment specific stressors, highlight the importance of representative 157 

design given the likely interaction between these constraints and cognitive performance. Whilst safety 158 



and ethical implications of a ‘fully’ representative military data collection environment make this an 159 

impractical approach, more representative designs can still be achieved. At a very simplistic level, 160 

soldier’s must scan the oncoming terrain for hazards and obstacles in order to identify safe foot locations 161 

(Mahoney et al., 2007). This additional competition for cognitive resources, is inherently included 162 

within field-based investigations (Crowell et al., 1999; Nibbeling et al., 2014; Giles et al., 2019), but 163 

not typically applied during laboratory investigations. This laboratory research omission is despite data 164 

demonstrating a reduction in vigilance task performance, and an increase in distance covered by 165 

individuals (despite being able to step over them), when walking and avoiding obstacles (Mahoney et 166 

al., 2007). Similar results have also been observed when using monocular see-through head-mounted 167 

displays; whereby a dramatic reduction in a visual monitoring task was observed during walking, but 168 

not standing conditions (Mustonen et al., 2013), along with increased response times and reduced 169 

accuracy (Sampson, 1993).  170 

Another consideration is the impact of thermal environmental conditions on cognitive performance 171 

(see review by Martin et al., 2019). Despite this comprehensive evidence, only two cognitively focused 172 

load carriage investigations have been conducted outside of normothermic conditions (Caldwell et al., 173 

2011; Bhattacharyya et al., 2017). Importantly, many operational environments exist where a 174 

combination of environmental conditions may be apparent (e.g. altitude and cold). These conditions 175 

may have indirect effects, such as dehydration which has been shown to predict the decrement in central 176 

executive tasks and perceptions of mood state during exercise in the heat (McMorris et al., 2006). With 177 

both primary and secondary implications of environmental conditions, it emphasises the importance of 178 

this factor within representative design. 179 

Finally, during operations, combatants experience high levels of anxiety due to the constant threat 180 

of an enemy attack (Nibbeling et al., 2014). As with the other environmental considerations, the impact 181 

of anxiety is additive to the other cognitive challenges. Purportedly, anxiety will result in an attentional 182 

shift from task-relevant to task-irrelevant information; likely causing combatants to miss critical 183 

information (Nibbeling et al., 2014). Whilst a number of publications have detailed the relationship 184 

between anxiety and cognitive performance in police scenarios (e.g. Nieuwenhuys & Oudejans, 2010, 185 



2011; Nieuwenhuys, Savelsbergh, & Oudejans, 2012; Oudejans, 2008), considerably less attention has 186 

been given within the military sphere (Nibbeling et al., 2014). Again, highlighting the diversity and 187 

prevalence of interacting factors within the battlefield environment that may dramatically influence 188 

cognitive performance and further cementing the requirement for representative study designs. 189 

Moreover, we suggest, given the similarities between military, non-military uniformed services (e.g. 190 

emergency services), and other physically demanding occupations (e.g. mining and energy sectors) this 191 

approach should also be utilised with these populations. 192 

 193 

Conclusion 194 

With a growing interest in the military specific exercise-cognition relationship, it is key that 195 

observations can be translated from a research setting to military training and operations. Whilst some 196 

caveats pertaining to representative design exist, we encourage its further use within military research. 197 

In particular, we have shown that this can be achieved through an optimised balance between 198 

experimental control and external validity for the key parameters of dual-/multi-tasking, study 199 

population, cognitive task selection, and data collection environment. 200 
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Figure 1. The Continuum Between High Representativeness and High Transferability to Low 324 
Representativeness and Low Transferability.  325 

Where numbers denote references for each example: (1) Bhattacharyya, Pal, Chatterjee, & Majumdar (2017); 326 
(2) Kobus, Brown, Wu, Robusto, & Bartlett (2010); (3) Giles, Hasselquist, Caruso, & Eddy, (2019); (4) May, 327 
Tomporowski, & Ferrara, (2009); (5) Caldwell, Engelen, van der Henst, Patterson, & Taylor, (2011); (6) 328 
Nibbeling, Oudejans, Ubink, & Daanen, (2014); (7) Son, Hyun, Beck, Jung, & Park, (2019), (8) Roberts & 329 
Cole, (2013). 330 


