15 research outputs found

    The DDX6-4E-T interaction mediates translational repression and P-body assembly.

    Get PDF
    4E-Transporter binds eIF4E via its consensus sequence YXXXXLΊ, shared with eIF4G, and is a nucleocytoplasmic shuttling protein found enriched in P-(rocessing) bodies. 4E-T inhibits general protein synthesis by reducing available eIF4E levels. Recently, we showed that 4E-T bound to mRNA however represses its translation in an eIF4E-independent manner, and contributes to silencing of mRNAs targeted by miRNAs. Here, we address further the mechanism of translational repression by 4E-T by first identifying and delineating the interacting sites of its major partners by mass spectrometry and western blotting, including DDX6, UNR, unrip, PAT1B, LSM14A and CNOT4. Furthermore, we document novel binding between 4E-T partners including UNR-CNOT4 and unrip-LSM14A, altogether suggesting 4E-T nucleates a complex network of RNA-binding protein interactions. In functional assays, we demonstrate that joint deletion of two short conserved motifs that bind UNR and DDX6 relieves repression of 4E-T-bound mRNA, in part reliant on the 4E-T-DDX6-CNOT1 axis. We also show that the DDX6-4E-T interaction mediates miRNA-dependent translational repression and de novo P-body assembly, implying that translational repression and formation of new P-bodies are coupled processes. Altogether these findings considerably extend our understanding of the role of 4E-T in gene regulation, important in development and neurogenesis.BBSRC [BB/J00779X/1 to N.S.]; CNRS PICS (to D.W.); Agence Nationale pour la Recherche [ANR-14-CE09-0013-01ANR to D.W.]; Gates Cambridge Foundation (to A.K.); Fondation Wiener – Anspach of the UniversitĂ© Libre de Bruxelles and the Cambridge Newton Trust (C.V.). Funding for open access charge: BBSRC

    GC content shapes mRNA storage and decay in human cells.

    Get PDF
    mRNA translation and decay appear often intimately linked although the rules of this interplay are poorly understood. In this study, we combined our recent P-body transcriptome with transcriptomes obtained following silencing of broadly acting mRNA decay and repression factors, and with available CLIP and related data. This revealed the central role of GC content in mRNA fate, in terms of P-body localization, mRNA translation and mRNA stability: P-bodies contain mostly AU-rich mRNAs, which have a particular codon usage associated with a low protein yield; AU-rich and GC-rich transcripts tend to follow distinct decay pathways; and the targets of sequence-specific RBPs and miRNAs are also biased in terms of GC content. Altogether, these results suggest an integrated view of post-transcriptional control in human cells where most translation regulation is dedicated to inefficiently translated AU-rich mRNAs, whereas control at the level of 5' decay applies to optimally translated GC-rich mRNAs

    Etude des régulations post-transcriptionnelles de l'expression génétique: modÚle de la dégradation de l'ARN messager CecA1 porteur d'éléments riches en adénine et uridine chez Drosophila melanogaster

    No full text
    L’expression des gĂšnes chez les organismes eucaryotes est un processus hautement rĂ©gulĂ© dans l’espace et dans le temps. Les ARN messagers, premiĂšrement dĂ©crits comme simples intermĂ©diaires entre l’ADN et les protĂ©ines, s’avĂšrent ĂȘtre des Ă©lĂ©ments centraux de la rĂ©gulation de l’expression gĂ©nique :les rĂ©gulations post-transcriptionnelles vont influencer la stabilitĂ©, la traductibilitĂ© et la localisation des ARN messagers (ARNm). Le contrĂŽle de la dĂ©gradation des ARNm est un moyen efficace d’adapter rapidement la production des protĂ©ines en fonction des besoins de la cellule. La dĂ©gradation des ARNm est un processus actif qui nĂ©cessite soit l’élimination de la coiffe en 5’ ou de la queue polyA en 3’, soit un clivage endonuclĂ©olytique. Dans la plupart des cas, le messager est premiĂšrement dĂ©adĂ©nylĂ©, puis dĂ©coiffĂ© avant d’ĂȘtre dĂ©gradĂ© dans le sens 5’-3’ ou dans le sens 3’-5’. De plus, les ARNm en cours de dĂ©gradation sont relocalisĂ©s dans des granules cytoplasmiques appelĂ©s Processing Bodies oĂč les facteurs de la dĂ©gradation sont concentrĂ©s. On trouve dans les messagers codant pour des protĂ©ines dont la production doit ĂȘtre finement rĂ©gulĂ©e, une variĂ©tĂ© importante d’élĂ©ments rĂ©gulateurs (Ă©lĂ©ments cis) le plus souvent au sein de leur rĂ©gion 3’ non traduite. La rĂ©gulation de la stabilitĂ© d’ARNm porteurs d’élĂ©ments riches en adĂ©nine et uridine (ARE) dans leur rĂ©gion 3’ non traduite (3’UTR) par les protĂ©ines capables de reconnaitre et lier ces Ă©lĂ©ments (ARE-BP) constitue un des exemples les plus documentĂ©s de rĂ©gulations post-transcriptionnelles de l’expression des gĂšne, mais le mĂ©canisme molĂ©culaire de cette rĂ©gulation est encore mal compris.Nous avons utilisĂ© le messager codant pour le peptide antimicrobien CĂ©cropineA1 liĂ© par l’ARE-BP dTIS11 comme modĂšle pour Ă©tudier les rĂ©gulations post-transcriptionnelles dĂ©pendantes des ARE chez la drosophile. Au cours de ce travail, nous avons dĂ©montrĂ© que le messager CecA1 subit une dĂ©adĂ©nylation biphasique. En effet, une dĂ©adĂ©nylation initiale racourcie la queue polyA sans diminuer la quantitĂ© de messager, puis une seconde dĂ©adĂ©nylation, prise en charge par le complexe de dĂ©adĂ©nylation CCR-NOT nĂ©cessite la prĂ©sence de la protĂ©ine dTIS11 et conduit Ă  la dĂ©gradation totale du transcrit. L’observation des intermĂ©diaires de la dĂ©gradation nous montre que, aprĂšs sa dĂ©adĂ©nylation totale, le messager est dĂ©coiffĂ©, puis dĂ©gradĂ© dans les deux directions: 3’-5’ et 5’-3’. Contrairement Ă  ce qui a Ă©tĂ© montrĂ© pour ces homologues mammifĂšres, la protĂ©ine dTIS11 n’induit pas l’accumulation du messager CecA1 dans les Processing Bodies mais favorise la deuxiĂšme phase de dĂ©adĂ©nylation alors que le messager CecA1 est associĂ© Ă  la machinerie de traduction afin d’induire une dĂ©gradation rapide et efficace du transcrit.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Etude des régulations post-transcriptionnelles de l'expression génétique: modÚle de la dégradation de l'ARN messager CecA1 porteur d'éléments riches en adénine et uridine chez Drosophila melanogaster

    No full text
    L’expression des gĂšnes chez les organismes eucaryotes est un processus hautement rĂ©gulĂ© dans l’espace et dans le temps. Les ARN messagers, premiĂšrement dĂ©crits comme simples intermĂ©diaires entre l’ADN et les protĂ©ines, s’avĂšrent ĂȘtre des Ă©lĂ©ments centraux de la rĂ©gulation de l’expression gĂ©nique :les rĂ©gulations post-transcriptionnelles vont influencer la stabilitĂ©, la traductibilitĂ© et la localisation des ARN messagers (ARNm). Le contrĂŽle de la dĂ©gradation des ARNm est un moyen efficace d’adapter rapidement la production des protĂ©ines en fonction des besoins de la cellule. La dĂ©gradation des ARNm est un processus actif qui nĂ©cessite soit l’élimination de la coiffe en 5’ ou de la queue polyA en 3’, soit un clivage endonuclĂ©olytique. Dans la plupart des cas, le messager est premiĂšrement dĂ©adĂ©nylĂ©, puis dĂ©coiffĂ© avant d’ĂȘtre dĂ©gradĂ© dans le sens 5’-3’ ou dans le sens 3’-5’. De plus, les ARNm en cours de dĂ©gradation sont relocalisĂ©s dans des granules cytoplasmiques appelĂ©s Processing Bodies oĂč les facteurs de la dĂ©gradation sont concentrĂ©s. On trouve dans les messagers codant pour des protĂ©ines dont la production doit ĂȘtre finement rĂ©gulĂ©e, une variĂ©tĂ© importante d’élĂ©ments rĂ©gulateurs (Ă©lĂ©ments cis) le plus souvent au sein de leur rĂ©gion 3’ non traduite. La rĂ©gulation de la stabilitĂ© d’ARNm porteurs d’élĂ©ments riches en adĂ©nine et uridine (ARE) dans leur rĂ©gion 3’ non traduite (3’UTR) par les protĂ©ines capables de reconnaitre et lier ces Ă©lĂ©ments (ARE-BP) constitue un des exemples les plus documentĂ©s de rĂ©gulations post-transcriptionnelles de l’expression des gĂšne, mais le mĂ©canisme molĂ©culaire de cette rĂ©gulation est encore mal compris.Nous avons utilisĂ© le messager codant pour le peptide antimicrobien CĂ©cropineA1 liĂ© par l’ARE-BP dTIS11 comme modĂšle pour Ă©tudier les rĂ©gulations post-transcriptionnelles dĂ©pendantes des ARE chez la drosophile. Au cours de ce travail, nous avons dĂ©montrĂ© que le messager CecA1 subit une dĂ©adĂ©nylation biphasique. En effet, une dĂ©adĂ©nylation initiale racourcie la queue polyA sans diminuer la quantitĂ© de messager, puis une seconde dĂ©adĂ©nylation, prise en charge par le complexe de dĂ©adĂ©nylation CCR-NOT nĂ©cessite la prĂ©sence de la protĂ©ine dTIS11 et conduit Ă  la dĂ©gradation totale du transcrit. L’observation des intermĂ©diaires de la dĂ©gradation nous montre que, aprĂšs sa dĂ©adĂ©nylation totale, le messager est dĂ©coiffĂ©, puis dĂ©gradĂ© dans les deux directions: 3’-5’ et 5’-3’. Contrairement Ă  ce qui a Ă©tĂ© montrĂ© pour ces homologues mammifĂšres, la protĂ©ine dTIS11 n’induit pas l’accumulation du messager CecA1 dans les Processing Bodies mais favorise la deuxiĂšme phase de dĂ©adĂ©nylation alors que le messager CecA1 est associĂ© Ă  la machinerie de traduction afin d’induire une dĂ©gradation rapide et efficace du transcrit.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Pat1 RNA-binding proteins: Multitasking shuttling proteins

    No full text
    International audienc

    Translation regulation of mammalian selenoproteins

    No full text
    International audienceBACKGROUND: Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. SCOPE OF REVIEW: The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA[Ser]Sec devoted to UGA codon recognition and the SECIS elements located in the 3'UTR of selenoprotein mRNAs. MAJOR CONCLUSIONS: The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. GENERAL SIGNIFICANCE: The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation

    RNA-binding protein-mediated post-transcriptional controls of gene expression: integration of molecular mechanisms at the 3' end of mRNAs?

    No full text
    Initially identified as an occasional and peculiar mode of gene regulation in eukaryotes, RNA-binding protein-mediated post-transcriptional control of gene expression has emerged, over the last two decades, as a major contributor in the control of gene expression. A large variety of RNA-binding proteins (RBPs) allows the recognition of very diverse messenger RNA sequences and participates in the regulation of basically all cellular processes. Nevertheless, the rapid outcome of post-transcriptional regulations on the level of gene expression has favored the expansion of this type of regulation in cellular processes prone to rapid and frequent modulations such as the control of the inflammatory response. At the molecular level, the 3'untranslated region (3'UTR) of mRNA is a favored site of RBP recruitment. RBPs binding to these regions control gene expression through two major modes of regulation, namely mRNA decay and modulation of translational activity. Recent progresses suggest that these two mechanisms are often interdependent and might result one from the other. Therefore, different RBPs binding distinct RNA subsets could share similar modes of action at the molecular level. RBPs are frequent targets of post-translational modifications, thereby disclosing numerous possibilities for pharmacological interventions. However, redundancies of the transduction pathways controlling these modifications have limited the perspectives to define RBPs as new therapeutic targets. Through the analysis of several examples of RBPs binding to 3'Untranslated Region of mRNA, we present here recent progress and perspectives regarding this rapidly evolving field of molecular biology.Journal ArticleSCOPUS: re.jinfo:eu-repo/semantics/publishe

    Selenium, Selenoproteins and Viral Infection

    No full text
    International audienceReactive oxygen species (ROS) are frequently produced during viral infections. Generation of these ROS can be both beneficial and detrimental for many cellular functions. When overwhelming the antioxidant defense system, the excess of ROS induces oxidative stress. Viral infections lead to diseases characterized by a broad spectrum of clinical symptoms, with oxidative stress being one of their hallmarks. In many cases, ROS can, in turn, enhance viral replication leading to an amplification loop. Another important parameter for viral replication and pathogenicity is the nutritional status of the host. Viral infection simultaneously increases the demand for micronutrients and causes their loss, which leads to a deficiency that can be compensated by micronutrient supplementation. Among the nutrients implicated in viral infection, selenium (Se) has an important role in antioxidant defense, redox signaling and redox homeostasis. Most of biological activities of selenium is performed through its incorporation as a rare amino acid selenocysteine in the essential family of selenoproteins. Selenium deficiency, which is the main regulator of selenoprotein expression, has been associated with the pathogenicity of several viruses. In addition, several selenoprotein members, including glutathione peroxidases (GPX), thioredoxin reductases (TXNRD) seemed important in different models of viral replication. Finally, the formal identification of viral selenoproteins in the genome of molluscum contagiosum and fowlpox viruses demonstrated the importance of selenoproteins in viral cycle

    Interplay between Selenium, Selenoproteins and HIV-1 Replication in Human CD4 T-Lymphocytes

    No full text
    International audienceThe infection of CD4 T-lymphocytes with human immunodeficiency virus (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), disrupts cellular homeostasis, increases oxidative stress and interferes with micronutrient metabolism. Viral replication simultaneously increases the demand for micronutrients and causes their loss, as for selenium (Se). In HIV-infected patients, selenium deficiency was associated with a lower CD4 T-cell count and a shorter life expectancy. Selenium has an important role in antioxidant defense, redox signaling and redox homeostasis, and most of these biological activities are mediated by its incorporation in an essential family of redox enzymes, namely the selenoproteins. Here, we have investigated how selenium and selenoproteins interplay with HIV infection in different cellular models of human CD4 T lymphocytes derived from established cell lines (Jurkat and SupT1) and isolated primary CD4 T cells. First, we characterized the expression of the selenoproteome in various human T-cell models and found it tightly regulated by the selenium level of the culture media, which was in agreement with reports from non-immune cells. Then, we showed that selenium had no significant effect on HIV-1 protein production nor on infectivity, but slightly reduced the percentage of infected cells in a Jurkat cell line and isolated primary CD4 T cells. Finally, in response to HIV-1 infection, the selenoproteome was slightly altered

    A Versatile Strategy to Reduce UGA-Selenocysteine Recoding Efficiency of the Ribosome Using CRISPR-Cas9-Viral-Like-Particles Targeting Selenocysteine-tRNA[Ser]Sec Gene

    No full text
    The translation of selenoprotein mRNAs involves a non-canonical ribosomal event in which an in-frame UGA is recoded as a selenocysteine (Sec) codon instead of being read as a stop codon. The recoding machinery is centered around two dedicated RNA components: The selenocysteine insertion sequence (SECIS) located in the 3′ UTR of the mRNA and the selenocysteine-tRNA (Sec-tRNA[Ser]Sec). This translational UGA-selenocysteine recoding event by the ribosome is a limiting stage of selenoprotein expression. Its efficiency is controlled by the SECIS, the Sec-tRNA[Ser]Sec and their interacting protein partners. In the present work, we used a recently developed CRISPR strategy based on murine leukemia virus-like particles (VLPs) loaded with Cas9-sgRNA ribonucleoproteins to inactivate the Sec-tRNA[Ser]Sec gene in human cell lines. We showed that these CRISPR-Cas9-VLPs were able to induce efficient genome-editing in Hek293, HepG2, HaCaT, HAP1, HeLa, and LNCaP cell lines and this caused a robust reduction of selenoprotein expression. The alteration of selenoprotein expression was the direct consequence of lower levels of Sec-tRNA[Ser]Sec and thus a decrease in translational recoding efficiency of the ribosome. This novel strategy opens many possibilities to study the impact of selenoprotein deficiency in hard-to-transfect cells, since these CRISPR-Cas9-VLPs have a wide tropism
    corecore