46 research outputs found

    Therapeutic Approaches to Limit Hemolysis-Driven Endothelial Dysfunction: Scavenging Free Heme to Preserve Vasculature Homeostasis

    Get PDF
    Hemolysis results in the release of hemoglobin and heme into the bloodstream and is associated with the development of several pathologic conditions of different etiology, including hemoglobinopathies, hemolytic anemias, bacterial infections, malaria, and trauma. In addition, hemolysis is associated with surgical procedures, hemodialysis, blood transfusion, and other conditions in which mechanical forces can lead to red blood cell rupture. Free plasma hemoglobin and heme are toxic for the vascular endothelium since heme iron promotes oxidative stress that causes endothelial activation responsible for vasoocclusive events and thrombus formation. Moreover, free hemoglobin scavenges nitric oxide, reducing its bioavailability, and heme favours ROS production, thus causing oxidative nitric oxide consumption. This results in the dysregulation of the endothelium vasodilator:vasoconstrictor balance, leading to severe vasoconstriction and hypertension. Thus, endothelial dysfunction and impairment of cardiovascular function represent a common feature of pathologic conditions associated with hemolysis. In this review, we discuss how hemoglobin/heme released following hemolysis may affect vascular function and summarise the therapeutic approaches available to limit hemolysis-driven endothelial dysfunction. Particular emphasis is put on recent data showing the beneficial effects obtained through the use of the plasma heme scavenger hemopexin in counteracting heme-mediated endothelial damage in mouse models of hemolytic diseases

    Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes

    Get PDF
    Heme (iron-protoporphyrin IX) is an essential co-factor involved in multiple biological processes: oxygen transport and storage, electron transfer, drug and steroid metabolism, signal transduction, and micro RNA processing. However, excess free-heme is highly toxic due to its ability to promote oxidative stress and lipid peroxidation, thus leading to membrane injury and, ultimately, apoptosis. Thus, heme metabolism needs to be finely regulated. Intracellular heme amount is controlled at multiple levels: synthesis, utilization by hemoproteins, degradation and both intracellular and intercellular trafficking.This review focuses on recent findings highlighting the importance of controlling intracellular heme levels to counteract heme-induced oxidative stress. The contributions of heme scavenging from the extracellular environment, heme synthesis and incorporation into hemoproteins, heme catabolism and heme transport in maintaining adequate intracellular heme content are discussed. Particular attention is put on the recently described mechanisms of heme trafficking through the plasma membrane mediated by specific heme importers and exporters. Finally, the involvement of genes orchestrating heme metabolism in several pathological conditions is illustrated and new therapeutic approaches aimed at controlling heme metabolism are discussed. <br/

    Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Get PDF
    Background & AimsThe liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice.MethodsWe created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a fl/fl;alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured.ResultsFlvcr1afl/fl;alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1afl/fl;alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450.ConclusionsIn livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism

    Hemopexin Therapy Improves Cardiovascular Function by Preventing Heme-Induced Endothelial Toxicity in Mouse Models of Hemolytic Diseases

    Get PDF
    Background-Hemolytic diseases are characterized by enhanced intravascular hemolysis resulting in heme-catalyzed reactive oxygen species generation, which leads to endothelial dysfunction and oxidative damage. Hemopexin (Hx) is a plasma heme scavenger able to prevent endothelial damage and tissue congestion in a model of heme overload. Here, we tested whether Hx could be used as a therapeutic tool to counteract heme toxic effects on the cardiovascular system in hemolytic diseases. Methods and Results\u2014By using a model of heme overload in Hx-null mice, we demonstrated that heme excess in plasma, if not bound to Hx, promoted the production of reactive oxygen species and the induction of adhesion molecules and caused the reduction of nitric oxide availability. Then, we used \u3b2-thalassemia and sickle cell disease mice as models of hemolytic diseases to evaluate the efficacy of an Hx-based therapy in the treatment of vascular dysfunction related to heme overload. Our data demonstrated that Hx prevented heme-iron loading in the cardiovascular system, thus limiting the production of reactive oxygen species, the induction of adhesion molecules, and the oxidative inactivation of nitric oxide synthase/nitric oxide, and promoted heme recovery and detoxification by the liver mainly through the induction of heme oxygenase activity. Moreover, we showed that in sickle cell disease mice, endothelial activation and oxidation were associated with increased blood pressure and altered cardiac function, and the administration of exogenous Hx was found to almost completely normalize these parameters. Conclusions-Hemopexin treatment is a promising novel therapy to protect against heme-induced cardiovascular dysfunction in hemolytic disorders

    Data demonstrating the anti-oxidant role of hemopexin in the heart

    Get PDF
    The data presented in this article are related to the research article entitled Hemopexin counteracts systolic dysfunction induced by heme-driven oxidative stress (G. Ingoglia, C. M. Sag, N. Rex, L. De Franceschi, F. Vinchi, J. Cimino, S. Petrillo, S. Wagner, K. Kreitmeier, L. Silengo, F. Altruda, L. S. Maier, E. Hirsch, A. Ghigo and E. Tolosano, 2017) [1]. Data show that heme induces reactive oxygen species (ROS) production in primary cardiomyocytes. H9c2 myoblastic cells treated with heme bound to human Hemopexin (Hx) are protected from heme accumulation and oxidative stress. Similarly, the heme-driven oxidative response is reduced in primary cardiomyocytes treated with Hx-heme compared to heme alone. Our in vivo data show that mouse models of hemolytic disorders, β-thalassemic mice and phenylhydrazine-treated mice, have low serum Hx associated to enhanced expression of heme- and oxidative stress responsive genes in the heart. Hx-/- mice do not show signs of heart fibrosis or overt inflammation. For interpretation and discussion of these data, refer to the research article referenced above. Keywords: Heme, Hemopexin, Heart, Oxidative stres
    corecore