194 research outputs found

    Pathway analysis for genetic association studies: to do, or not to do? That is the question

    Get PDF
    In Genetic Analysis Workshop 18 data, we used a 3-stage approach to explore the benefits of pathway analysis in improving a model to predict 2 diastolic blood pressure phenotypes as a function of genetic variation. At stage 1, gene-based tests of association in family data of approximately 800 individuals found over 600 genes associated at p<0.05 for each phenotype. At stage 2, networks and enriched pathways were estimated with Cytoscape for genes from stage 1, separately for the 2 phenotypes, then examining network overlap. This overlap identified 4 enriched pathways, and 3 of these pathways appear to interact, and are likely candidates for playing a role in hypertension. At stage 3, using 157 maximally unrelated individuals, partial least squares regression was used to find associations between diastolic blood pressure and single-nucleotide polymorphisms in genes highlighted by the pathway analyses. However, we saw no improvement in the adjusted cross-validated R(2). Although our pathway-motivated regressions did not improve prediction of diastolic blood pressure, merging gene networks did identify several plausible pathways for hypertension

    Increased Burden of Common Risk Alleles in Children With a Significant Fracture History

    Get PDF
    Extreme presentations of common disease in children are often presumed to be of Mendelian etiology, but their polygenic basis has not been fully explored. We tested whether children with significant fracture history and no osteogenesis imperfecta (OI) are at increased polygenic risk for fracture. A childhood significant fracture history was defined as the presence of low-trauma vertebral fractures or multiple long bone fractures. We generated a polygenic score of heel ultrasound-derived speed of sound, termed "gSOS," which predicts risk of osteoporotic fracture. We tested if individuals from three cohorts with significant childhood fracture history had lower gSOS. A Canadian cohort included 94 children with suspected Mendelian osteoporosis, of which 68 had negative OI gene panel. Two Finnish cohorts included 59 children with significant fracture history and 22 with suspected Mendelian osteoporosis, among which 18 had no OI. After excluding individuals with OI and ancestral outliers, we generated gSOS estimates and compared their mean to that of a UK Biobank subset, representing the general population. The average gSOS across all three cohorts (n = 131) was -0.47 SD lower than that in UK Biobank (n = 80,027, p = 1.1 x 10(-5)). The gSOS of 78 individuals with suspected Mendelian osteoporosis was even lower (-0.76 SD, p = 5.3 x 10(-10)). Among the 131 individuals with a significant fracture history, we observed 8 individuals with gSOS below minus 2 SD from the mean; their mean lumbar spine DXA-derived bone mineral density Z-score was -1.7 (SD 0.8). In summary, children with significant fracture history but no OI have an increased burden of common risk alleles. This suggests that a polygenic contribution to disease should be considered in children with extreme presentations of fracture. (c) 2020 American Society for Bone and Mineral Research.Peer reviewe

    Large differences in adiponectin levels have no clear effect on multiple sclerosis risk: A Mendelian randomization study.

    Get PDF
    BACKGROUND: Mendelian randomization (MR) studies have demonstrated strong support for an association between genetically increased body mass index and risk of multiple sclerosis (MS). The adipokine adiponectin may be a potential mechanism linking body mass to risk of MS. OBJECTIVE: To evaluate whether genetically increased adiponectin levels influence risk of MS. METHODS: Using genome-wide significant single nucleotide polymorphisms (SNPs) for adiponectin, we undertook an MR study to estimate the effect of adiponectin on MS. This method prevents bias due to reverse causation and minimizes bias due to confounding. Sensitivity analyses were performed to evaluate the assumptions of MR. RESULTS: MR analyses did not support a role for genetically elevated adiponectin in risk of MS (odds ratio (OR) = 0.93 per unit increase in natural-log-transformed adiponectin, equivalent to a two-standard deviation increase in adiponectin on the absolute scale; 95% confidence interval (CI) = 0.66-1.33; p = 0.61). Further MR analysis suggested that genetic variation at the adiponectin gene, which influences adiponectin level, does not impact MS risk. Sensitivity analyses, including MR-Egger regression, suggested no bias due to pleiotropy. CONCLUSION: Lifelong genetically increased adiponectin levels in humans have no clear effect on risk of MS. Other biological factors driving the association between body mass and MS should be investigated

    Sex differences in the risk of coronary heart disease associated with type 2 diabetes:a Mendelian Randomization analysis

    Get PDF
    OBJECTIVE Observational studies have demonstrated that type 2 diabetes is a stronger risk factor for coronary heart disease (CHD) in women compared with men. However, it is not clear whether this reflects a sex differential in the causal effect of diabetes on CHD risk or results from sex-specific residual confounding. RESEARCH DESIGN AND METHODS Using 270 single nucleotide polymorphisms (SNPs) for type 2 diabetes identified in a type 2 diabetes genome-wide association study, we performed a sex-stratified Mendelian randomization (MR) study of type 2 diabetes and CHD using individual participant data in UK Biobank (251,420 women and 212,049 men). Weighted median, MR-Egger, MR-pleiotropy residual sum and outlier, and radial MR from summary-level analyses were used for pleiotropy assessment. RESULTS MR analyses showed that genetic risk of type 2 diabetes increased the odds of CHD for women (odds ratio 1.13 [95% CI 1.08–1.18] per 1-log unit increase in odds of type 2 diabetes) and men (1.21 [1.17–1.26] per 1-log unit increase in odds of type 2 diabetes). Sensitivity analyses showed some evidence of directional pleiotropy; however, results were similar after correction for outlier SNPs. CONCLUSIONS This MR analysis supports a causal effect of genetic liability to type 2 diabetes on risk of CHD that is not stronger for women than men. Assuming a lack of bias, these findings suggest that the prevention and management of type 2 diabetes for CHD risk reduction is of equal priority in both sexes

    A Mendelian randomization study of the effect of type-2 diabetes on coronary heart disease

    Get PDF
    In observational studies, type-2 diabetes (T2D) is associated with an increased risk of coronary heart disease (CHD), yet interventional trials have shown no clear effect of glucose-lowering on CHD. Confounding may have therefore influenced these observational estimates. Here we use Mendelian randomization to obtain unconfounded estimates of the influence of T2D and fasting glucose (FG) on CHD risk. Using multiple genetic variants associated with T2D and FG, we find that risk of T2D increases CHD risk (odds ratio (OR)=1.11 (1.05–1.17), per unit increase in odds of T2D, P=8.8 × 10−5; using data from 34,840/114,981 T2D cases/controls and 63,746/130,681 CHD cases/controls). FG in non-diabetic individuals tends to increase CHD risk (OR=1.15 (1.00–1.32), per mmol·per l, P=0.05; 133,010 non-diabetic individuals and 63,746/130,681 CHD cases/controls). These findings provide evidence supporting a causal relationship between T2D and CHD and suggest that long-term trials may be required to discern the effects of T2D therapies on CHD risk
    corecore