154 research outputs found

    Enhancing selectivity in photocatalytic formation of p-anisaldehyde in aqueous suspension under solar light irradiation via TiO2 N-doping

    Get PDF
    The photocatalytic partial oxidation of 4-methoxybenzyl alcohol to the corresponding aldehyde (p-anisaldehyde) was performed under simulated solar irradiation by using home prepared N-doped TiO2 catalysts. The photocatalysts were prepared by a sol–gel method, using TiCl4 as TiO2 precursor and NH4Cl, urea or NH4OH as N-doping sources. A commercial TiO2 (Degussa P25) was also used for comparison aims. The prepared catalysts were characterized by BET specific surface area, XRD, ESEM and UV-vis spectroscopy. The reactivity results show that (i) the doped catalysts are predominantly amorphous, and they show selectivity values far higher than those of the corresponding undoped ones and of well crystallized catalysts – even if the last ones show a higher activity – and (ii) exploitation of solar light significantly increases the reaction selectivity. In addition, different light sources were also used in order to investigate the effect of radiation wavelength ranges on the reactivity and selectivity to aldehyde

    The impact of age on prevalence of positive skin prick tests and specific IgE tests

    Get PDF
    SummaryAging is associated with modifications of the immune system, defined as immunosenescence. This could contribute to a reduced prevalence of allergic disease in the elderly population. In this regard, atopy has rarely been considered in the clinical assessment of the geriatric respiratory patient. This article is a review of the available literature assessing the impact of age on atopy. In the majority of papers, we found a lower prevalence of atopy in the most advanced ages, both in healthy subjects and in individuals affected by allergic respiratory diseases. Unfortunately, no large, longitudinal studies performed in the general population have been conducted to further explore this observation. Although available data seem to favor the decline of allergen sensitization with age, the prevalence of allergic sensitizations in the elderly population with respiratory symptoms is substantial enough to warrant evaluation of the atopic condition. From a clinical perspective, allergic reactions in older adults can have the same or even worse manifestations compared to young people. For this reasons, the evaluation of the atopic condition also in the geriatric patient is recommended. Thus, the role of atopy as it pertains to the diagnosis, therapy (adoption of preventive measure such as removal of environmental allergen or immunotherapy), and prognosis (influence on morbidity and mortality) of chronic respiratory illnesses in the elderly is addressed

    Photocatalytic selective oxidation of 5-(hydroxymethyl)-2-furaldehyde to 2,5-furandicarbaldehyde in water by using anatase, rutile and brookite TiO2 nanoparticles

    Get PDF
    5-(Hydroxymethyl)-2-furaldehyde (HMF) was selectively oxidized to 2,5-furandicarbaldehyde (FDC) in aqueous medium by using home-prepared (HP) anatase, rutile, and brookite TiO2 nanoparticles. HP samples were prepared via a sol−gel method by using TiCl4 as the TiO2 precursor. Commercial TiO2 catalysts were also used for comparison. All samples were characterized by BET specific surface area, XRD, TGA, and SEM, and the reactivity results showed that HP catalysts are predominantly amorphous and give rise to selectivities toward FDC more than twice that of commercial and well-crystallized catalysts

    Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home-prepared titanium dioxide: 1. Selectivity enhancement by aliphatic alcohols

    Get PDF
    Oxygenated aqueous suspensions of home-prepared (HP) and commercial TiO2 catalysts were used in a batch photoreactor for carrying out the oxidation of benzyl alcohol (BA) and 4-methoxybenzyl alcohol (MBA) under different operative conditions. HP catalysts were synthesized from TiCl4 and underwent a hydrolysis treatment of different times under mild conditions. The textural characterization of catalysts was carried out with XRD, SEM observations, BET surface area and porosity measurements. For both alcohols the main oxidation products were the corresponding aromatic aldehydes and CO2. The HP catalysts exhibited selectivity values towards the aldehyde production up to 28% (BA conversion: 50%) and 41% (MBA conversion: 65%), about four times higher than those of commercial TiO2. The addition of an aliphatic alcohol (methanol, ethanol, 2-propanol or tert-butanol) in small amounts with respect to water decreased the overall oxidation rate of aromatic alcohols but enhanced the selectivity for aldehyde formation up to 1.5 times. The reactivity results suggest that: (i) the aromatic alcohol molecules interact with the TiO2 surface in different ways that eventually determine two parallel reaction pathways (partial oxidation or mineralization); (ii) the aliphatic alcohols preferentially compete with aromatic alcohols for the mineralizing pathway.Peer reviewe

    The Role of Water in the Photocatalytic Degradation of Acetonitrile and Toluene in Gas-Solid and Liquid-Solid Regimes

    Get PDF
    Photocatalytic degradation of acetonitrile and toluene was carried out both in gas-solid and in liquid-solid regimes by using commercial TiO2 samples ( Merck and Degussa P25). The investigation was mainly aimed to study the influence of water present in the reaction environment on the mechanism and degradation rate of two probe molecules. In gas-solid regime, the reacting mixture consisted of toluene or acetonitrile, oxygen, nitrogen, and water vapour. The main degradation product of toluene was CO2 with small amounts of benzaldehyde. In the presence of water vapour, the activity of TiO2 Merck remained stable but greatly decreased if water was absent. TiO2 Degussa P25 continuously deactivated, even in the presence of water vapour. With both catalysts, the photodegradation products of acetonitrile were CO2 and HCN; the activity was stable and was independent of the presence of water vapour in the reacting mixture. The production of HCN represents a drawback of acetonitrile photocatalytic degradation but the elimination of HCN is not actually a problem. In liquid-solid regime, the main intermediates of toluene photodegradation were p-cresol and benzaldehyde; traces of pyrogallol and benzyl alcohol were also found. Benzoic acid, hydroquinone, and trans, trans muconic acid were detected only when TiO2 Merck was used. The photodegradation products of acetonitrile were cyanide, cyanate, formate, nitrate, and carbonate ions

    Partial oxidation of aromatic alcohols via TiO2 photocatalysis: the influence of substituent groups on the activity and selectivity

    No full text
    Aromatic alcohols with substituent groups in different positions have been partially oxidised to the corresponding aldehydes in a photocatalytic system in order to investigate the influence of the substituents on reactivity and selectivity to aldehyde. To this aim benzyl alcohol, 2-methoxybenzyl alcohol, 3-methoxybenzyl alcohol, 4-methoxybenzyl alcohol, 2,4-dimethoxybenzyl alcohol, 4-hydroxybenzyl alcohol and 4-hydroxy-3-methoxybenzyl alcohol have been photocatalytically oxidised to their corresponding aldehydes in aqueous TiO2 suspensions under near-UV irradiation. Home-made and commercial rutile TiO2 samples were used as photocatalysts. The catalysts were characterized by XRD, BET, SEM, TEM and TGA measurements. For all the used substrates the main oxidation products were the corresponding aldehydes and CO2. The aromatic alcohols showed selectivity values decreasing with the substituent position on the aromatic ring according the following order: para > ortho > meta. In the presence of two substituent groups, the overall oxidation rate increased while the selectivity decreased. The home-made catalyst generally showed selectivity higher but activity lower than those of the commercial one. The results showed that the reaction rate and selectivity were dependent not only on the catalyst properties such as crystallinity and hydrophilicity but also on the kind and position of the substituent groups of the aromatic alcohols

    Two-dimensional modeling of an externally irradiated slurry photoreactor

    No full text
    A batch cylindrical photocatalytic reactor, externally irradiated by one-to-six UV fluorescent lamps and containing a stirred slurry of polycrystalline TiO2, was modeled by coupling a modified Langmuir-Hinshelwood kinetics together with a two-dimensional light intensity field. The radiation field has been determined on the main assumptions of diffuse radiation, isotropic scattering and negligible backward reflected photon flow. The model has been applied to the photocatalytic oxidation of organic substrates which do not undergo homogeneous photochemical degradation. The model is characterized by the following four parameters: the kinetic constants of substrate adsorption, desorption and degradation and the exponent of the power law expressing the kinetics dependence on the light intensity. The model constants may be determined by applying a simple least-squares best fitting procedure
    corecore