87 research outputs found
Transcription variants of SLA-7, a swine non classical MHC class I gene
In pig, very little information is available on the non classical class I (Ib) genes of the Major Histocompatibility Complex (MHC) i.e. SLA-6, -7 and -8. Our aim was to focus on the transcription pattern of the SLA-7 gene. RT-PCR experiments were carried out with SLA-7 specific primers targeting either the full coding sequence (CDS) from exon 1 to the 3 prime untranslated region (3UTR) or a partial CDS from exon 4 to the 3UTR. We show that the SLA-7 gene expresses a full length transcript not yet identified that refines annotation of the gene with eight exons instead of seven as initially described from the existing RefSeq RNA. These two RNAs encode molecules that differ in cytoplasmic tail length. In this study, another SLA-7 transcript variant was characterized, which encodes a protein with a shorter alpha 3 domain, as a consequence of a splicing site within exon 4. Surprisingly, a cryptic non canonical GA-AG splicing site is used to generate this transcript variant. An additional SLA-7 variant was also identified in the 3UTR with a splicing site occurring 31 nucleotides downstream to the stop codon. In conclusion, the pig SLA-7 MHC class Ib gene presents a complex transcription pattern with two transcripts encoding various molecules and transcripts that do not alter the CDS and may be subject to post-transcriptional regulation
Sílabo de Finanzas I
El curso de Finanzas I es de naturaleza aplicativa y se propone desarrollar en los estudiantes la competencia para explicar y aplicar los principios y los modelos de la Teoría Financiera en la gestión financiera de una empresa con el objetivo de maximizar el valor de la empresa. El curso sirve de base para los cursos de Finanzas II ,Presupuestos, Contabilidad Gerencial y Formulación y Evaluación de Proyectos
Profiling the landscape of transcription, chromatin accessibility and chromosome conformation of cattle, pig, chicken and goat genomes [FAANG pilot project]
Functional annotation of livestock genomes is a critical and obvious next step to derive maximum benefit for agriculture, animal science, animal welfare and human health. The aim of the Fr-AgENCODE project is to generate multi-species functional genome annotations by applying high-throughput molecular assays on three target tissues/cells relevant to the study of immune and metabolic traits. An extensive collection of stored samples from other tissues is available for further use (FAANG Biosamples ‘FR-AGENCODE’). From each of two males and two females per species (pig, cattle, goat, chicken), strand-oriented RNA-seq and chromatin accessibility ATAC-seq assays were performed on liver tissue and on two T-cell types (CD3+CD4+&CD3+CD8+) sorted from blood (mammals) or spleen (chicken). Chromosome Conformation Capture (in situ Hi-C) was also carried out on liver. Sequencing reads from the 3 assays were processed using standard processing pipelines. While most (50–70%) RNA-seq reads mapped to annotated exons, thousands of novel transcripts and genes were found, including extensions of annotated protein-coding genes and new lncRNAs (see abstract #69857). Consistency of ATAC-seq results was confirmed by the significant proportion of called peaks in promoter regions (36–66%) and by the specific accumulation pattern of peaks around gene starts (TSS) v. gene ends (TTS). Principal Component Analyses for RNA-seq (based on quantified gene expression) and ATAC-seq (based on quantified chromatin accessibility) highlighted clusters characterised by cell type and sex in all species. From Hi-C data, we generated 40kb-resolution interaction maps, profiled a genome-wide Directionality Index and identified from 4,100 (chicken) to 12,100 (pig) topologically-associating do- mains (TADs). Correlations were reported between RNA-seq and ATAC-seq results (see abstract #71581). In summary, we present here an overview of the first multi-species and -tissue annotations of chromatin accessibility and genome architecture related to gene expression for farm animals
Tissue Resources for the Functional Annotation of Animal Genomes
In order to generate an atlas of the functional elements driving genome expression in domestic animals, the Functional Annotation of Animal Genome (FAANG) strategy was to sample many tissues from a few animals of different species, sexes, ages, and production stages. This article presents the collection of tissue samples for four species produced by two pilot projects, at INRAE (National Research Institute for Agriculture, Food and Environment) and the University of California, Davis. There were three mammals (cattle, goat, and pig) and one bird (chicken). It describes the metadata characterizing these reference sets (1) for animals with origin and selection history, physiological status, and environmental conditions; (2) for samples with collection site and tissue/cell processing; (3) for quality control; and (4) for storage and further distribution. Three sets are identified: set 1 comprises tissues for which collection can be standardized and for which representative aliquots can be easily distributed (liver, spleen, lung, heart, fat depot, skin, muscle, and peripheral blood mononuclear cells); set 2 comprises tissues requiring special protocols because of their cellular heterogeneity (brain, digestive tract, secretory organs, gonads and gametes, reproductive tract, immune tissues, cartilage); set 3 comprises specific cell preparations (immune cells, tracheal epithelial cells). Dedicated sampling protocols were established and uploaded in https://data.faang.org/protocol/samples. Specificities between mammals and chicken are described when relevant. A total of 73 different tissues or tissue sections were collected, and 21 are common to the four species. Having a common set of tissues will facilitate the transfer of knowledge within and between species and will contribute to decrease animal experimentation. Combining data on the same samples will facilitate data integration. Quality control was performed on some tissues with RNA extraction and RNA quality control. More than 5,000 samples have been stored with unique identifiers, and more than 4,000 were uploaded onto the Biosamples database, provided that standard ontologies were available to describe the sample. Many tissues have already been used to implement FAANG assays, with published results. All samples are available without restriction for further assays. The requesting procedure is described. Members of FAANG are encouraged to apply a range of molecular assays to characterize the functional status of collected samples and share their results, in line with the FAIR (Findable, Accessible, Interoperable, and Reusable) data principles
Le porc comme modèle d'étude du mélanome cutané humain : présentation du modèle MeLiM
International audienc
- …