21,940 research outputs found
Development of advanced techniques for rotorcraft state estimation and parameter identification
An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases
A comparison and evaluation of satellite derived positions of tracking stations
A comparison is presented of sets of satellite tracking station coordinate values published in the past few years by a number of investigators, i.e. Goddard Space Flight Center, Smithsonian Astrophysical Observatory, Ohio State University, The Naval Weapons Laboratory, Air Force Cambridge Research Laboratories, and Wallops Island. The comparisons have been made in terms of latitude, longitude and height. The results of the various solutions have been compared directly and also with external standards such as local survey data and gravimetrically derived geoid heights. After taking into account systematic rotations, latitude and longitude agreement on a global basis is generally 15 meters or better, on the North American Datum agreement is generally better than 10 meters. Allowing for scale differences (of the order of 2 ppm) radial agreement is generally of the order of 10 meters
Chamber shape effects on combustion instability
Rocket combustor shape effects on combustion instabilit
Surface compositional mapping by spectral ratioing of ERTS-1 MSS data in the Wind River Basin and Range, Wyoming
The author has identified the following significant results. ERTS data collected in August and October 1972 were processed on digital and special purpose analog recognition computers using ratio enhancement and pattern recognition. Ratios of band-averaged laboratory reflectances of some minerals and rock types known to be in the scene compared favorably with ratios derived from the data by ratio normalization procedures. A single ratio display and density slice of the visible channels of ERTS MSS data, Channel 5/Channel 4 (R5,4), separated the Triassic Chugwater formation (redbeds) from other formations present and may have enhanced iron oxide minerals present at the surface in abundance. Comparison of data sets collected over the same area at two different times of the year by digital processing indicated that spectral variation due to environmental factors was reduced by ratio processing
A target for production of radioxenons
A liquid cesium target has been developed which allows the production and separate identification of the neutron deficient isotopes of xenon. The present report describes irradiations utilizing 34 to 41 MeV protons to produce millicurie quantities of Xe-127 and Xe-129m. At higher energies, however, the target could be used without modification to produce xenon isotopes as light as 119
Incommensurate superfluidity of bosons in a double-well optical lattice
We study bosons in the first excited Bloch band of a double-well optical
lattice, recently realized at NIST. By calculating the relevant parameters from
a realistic nonseparable lattice potential, we find that in the most favorable
cases the boson lifetime in the first excited band can be several orders of
magnitude longer than the typical nearest-neighbor tunnelling timescales, in
contrast to that of a simple single-well lattice. In addition, for sufficiently
small lattice depths the excited band has minima at nonzero momenta
incommensurate with the lattice period, which opens a possibility to realize an
exotic superfluid state that spontaneously breaks the time-reversal,
rotational, and translational symmetries. We discuss possible experimental
signatures of this novel state.Comment: 4 pages, 5 figures
Multi-scale coarse-graining of diblock copolymer self-assembly: from monomers to ordered micelles
Starting from a microscopic lattice model, we investigate clustering,
micellization and micelle ordering in semi-dilute solutions of AB diblock
copolymers in a selective solvent. To bridge the gap in length scales, from
monomers to ordered micellar structures, we implement a two-step coarse
graining strategy, whereby the AB copolymers are mapped onto ``ultrasoft''
dumbells with monomer-averaged effective interactions between the centres of
mass of the blocks. Monte Carlo simulations of this coarse-grained model yield
clear-cut evidence for self-assembly into micelles with a mean aggregation
number n of roughly 100 beyond a critical concentration. At a slightly higher
concentration the micelles spontaneously undergo a disorder-order transition to
a cubic phase. We determine the effective potential between these micelles from
first principles.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett
Gas Sorption and Luminescence Properties of a Terbium(III)-Phosphine Oxide Coordination Material with Two-Dimensional Pore Topology
The structure, stability, gas sorption properties and luminescence behaviour of a new lanthanide-phosphine oxide coordination material are reported. The polymer PCM-15 is based on Tb(III) and tris(p-carboxylated) triphenylphosphine oxide and has a 5,5-connected net topology. It exhibits an infinite three-dimensional structure that incorporates an open, two-dimensional pore structure. The material is thermally robust and remains crystalline under high vacuum at 150 degrees C. When desolvated, the solid has a CO2 BET surface area of 1187 m(2) g(-1) and shows the highest reported uptake of both O-2 and H-2 at 77 K and 1 bar for a lanthanide-based coordination polymer. Isolated Tb(III) centres in the as-synthesized polymer exhibit moderate photoluminescence. However, upon removal of coordinated OH2 ligands, the luminescence intensity was found to approximately double; this process was reversible. Thus, the Tb(III) centre was used as a probe to detect directly the desolvation and resolvation of the polymer.Welch Foundation F-1738, F-1631National Science Foundation 0741973, CHE-0847763Chemistr
- …