124 research outputs found

    Phosphodiesterase 3 and 4 Inhibition: Facing a Bright Future in Asthma Control

    Get PDF
    A recent status on asthmaticus multiple case report by Beute demonstrated the beneficial effects of phosphodiesterase III (PDE3) and phosphodiesterase IV (PDE4) inhibition. This chapter reviews the possible underlying mechanisms, beside the known effect, for the beneficial effects of a mixed PDE3/4 inhibitor in allergic airway inflammation. Structural cells of the lung and immune system express PDE3 and 4. PDE3 and 4 inhibition have a number of consequences related to physical function and cytokine production. The most direct effect of PDE3 inhibition being relaxation of smooth muscle cells results in bronchodilation. However, PDE3 inhibition appears to go further than a mere inhibitory activity in bronchial smooth muscle. It also affects structural cells, and more importantly, it creates an improved barrier function in endothelial cells. PDE3 and 4 inhibition therefore strengthens the immune barrier; but in addition, it modifies the cells of the immune system itself, as these also express PDE3 and 4 activity, thus changing their function. All aspects of asthma-related pathophysiology seem to be affected by PDE3 and 4 inhibition. Clinical use of a mixed PDE3/4 inhibitor in respiratory diseases is currently limited to a few studies, including life-threatening asthma in which mixed PDE3/4 inhibition has a beneficial effect

    Post University On-the-Job Training for Engineers

    Get PDF
    Our national need for qualified scientists and engineers is greater now than at any other time in our history. Fortunately, we can point with pride to this need as a measure of the impact of science and technology on our way of life. In effect, we have made such rapid strides In advancing established sciences and in opening new technological fields that we have proved the value of the scientist and engineer to society, and, as a-result, have created an expanding demand for their services which we must now attempt to satisfy. This demand we face is also due to the changing skills and high degree of specialization required to perform in these new technological fields. The colleges and universities are doing their part to provide current graduates with a modern technical foundation, but we cannot afford to ignore the thousands of experienced engineers and scientists already employed by private industry and government. As employers, we have an obligation to these men and women to see that they are provided with an understanding of the latest advances that modern technology has to offer; that we develop them in particular specialty areas characteristic of a given field of work; and, equally important, that we assist them in the transition from one field to another as the technological emphasis shifts. Practically all technological industries have experienced and continue to experience rapid changes in their activities. The aerospace business, in particular, has been characterized by extremely rapid, in fact revolutionary, changes during the relatively short period of its existence0 At the National Aeronautics and Space Administration, successor to the National Advisory Committee for Aeronautics, for example, we have encountered the fun impact of a changing science and technology. Indeed, as a research organization, we have undoubtedly contributed, in some measure, to this change. Within the NASAs Lewis Research Center, we have approximately 800 research scientists and engineers who have matured professionally in an environment which is essentially one of continuous learning - an experience which comes close to being a form of post graduate training in itself. This environment, in addition to providing continuous evolutionary changes, has also provided two major revolutions which have made this development picture more complex. We will describe these environmental changes which have occurred at the Lewis Research Center and discuss the various techniques and programs we have employed to provide for the professional development of our staff. The Lewis Research Center has had an Interesting and exciting l8-year history of aerospace propulsion research and development. It began during the early years of World War II as an expansion of the Power Plant Division of the NCA Langley Center with the mission of conducting research required for the development of improved reciprocating engines and to study the associated problems of subsonic propulsion aerodynamics, It was only a few years later, however, that turbojet and ramjet propulsion and supersonic flight research became our main concern. This transition to jet type engines and higher speeds was our first major technological change. The aerodynamics of propellers became the aerodynamics of high speed turbine and compressor blades; the fuel ignition and carbon deposition problems were transferred from a cyclical or Intermittent high compression combustion chamber to a continuous combustion zone within a thin-walled metal shell; aerodynamics problems were thrust into the supersonic range; and high temperature materials began to play an increasingly critical role. Although this transition still required the same basic knowledge and principles as before, the new engine types did involve a different emphasis and variety of consideration not generally familiar to our scientists and engineers

    Advances in targeting cyclic nucleotide phosphodiesterases

    Get PDF
    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants

    A Role for Phosphodiesterase 3B in Acquisition of Brown Fat Characteristics by White Adipose Tissue in Male Mice.

    Get PDF
    Obesity is linked to various diseases, including insulin resistance, diabetes, and cardiovascular disorders. The idea of inducing white adipose tissue (WAT) to assume characteristics of brown adipose tissue (BAT), and thus gearing it to fat-burning instead of storage, is receiving serious consideration as potential treatment for obesity and related disorders. Phosphodiesterase 3B (PDE3B) links insulin- and cAMP-signaling networks in tissues associated with energy metabolism, including WAT. We utilized C57BL/6 PDE3B knockout (KO) mice to elucidate mechanisms involved in the formation of BAT in epididymal WAT (EWAT) depots. Examination of gene expression profiles in PDE3B KO EWAT revealed increased expression of several genes that block white and promote brown adipogenesis, such as C-terminal binding protein (Ctbp), bone morphogenetic protein 7 (Bmp7) and PR domain containing 16 (Prdm16), but a clear BAT-like phenotype was not completely induced. However, acute treatment of PDE3B KO mice with the β3-adrenergic agonist, CL316243, markedly increased expression of cyclooxygenase-2 (COX-2), which catalyzes prostaglandin synthesis and is thought to be important in formation of BAT in WAT, and of elongation of very long chain fatty acids 3 (Elovl3), which is linked to BAT recruitment upon cold exposure, causing a clear shift toward fat-burning and induction of BAT in KO EWAT. These data provide insight into mechanisms of BAT formation in mouse EWAT, suggesting that, in C57BL/6 background, an increase in cAMP, caused by ablation of PDE3B and administration of CL316243, may promote differentiation of prostaglandin-responsive progenitor cells in the EWAT stromal vascular fraction into functional brown adipocytes

    Phosphodiesterase 3B Is Localized in Caveolae and Smooth ER in Mouse Hepatocytes and Is Important in the Regulation of Glucose and Lipid Metabolism

    Get PDF
    Cyclic nucleotide phosphodiesterases (PDEs) are important regulators of signal transduction processes mediated by cAMP and cGMP. One PDE family member, PDE3B, plays an important role in the regulation of a variety of metabolic processes such as lipolysis and insulin secretion. In this study, the cellular localization and the role of PDE3B in the regulation of triglyceride, cholesterol and glucose metabolism in hepatocytes were investigated. PDE3B was identified in caveolae, specific regions in the plasma membrane, and smooth endoplasmic reticulum. In caveolin-1 knock out mice, which lack caveolae, the amount of PDE3B protein and activity were reduced indicating a role of caveolin-1/caveolae in the stabilization of enzyme protein. Hepatocytes from PDE3B knock out mice displayed increased glucose, triglyceride and cholesterol levels, which was associated with increased expression of gluconeogenic and lipogenic genes/enzymes including, phosphoenolpyruvate carboxykinase, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein 1c and hydroxyl-3-methylglutaryl coenzyme A reductase. In conclusion, hepatocyte PDE3B is localized in caveolae and smooth endoplasmic reticulum and plays important roles in the regulation of glucose, triglyceride and cholesterol metabolism. Dysregulation of PDE3B could have a role in the development of fatty liver, a condition highly relevant in the context of type 2 diabetes

    Expression and Regulation of Cyclic Nucleotide Phosphodiesterases in Human and Rat Pancreatic Islets

    Get PDF
    As shown by transgenic mouse models and by using phosphodiesterase 3 (PDE3) inhibitors, PDE3B has an important role in the regulation of insulin secretion in pancreatic β-cells. However, very little is known about the regulation of the enzyme. Here, we show that PDE3B is activated in response to high glucose, insulin and cAMP elevation in rat pancreatic islets and INS-1 (832/13) cells. Activation by glucose was not affected by the presence of diazoxide. PDE3B activation was coupled to an increase as well as a decrease in total phosphorylation of the enzyme. In addition to PDE3B, several other PDEs were detected in human pancreatic islets: PDE1, PDE3, PDE4C, PDE7A, PDE8A and PDE10A. We conclude that PDE3B is activated in response to agents relevant for β-cell function and that activation is linked to increased as well as decreased phosphorylation of the enzyme. Moreover, we conclude that several PDEs are present in human pancreatic islets
    • …
    corecore