66 research outputs found

    Identification of the dominant recombination process for perovskite solar cells based on machine learning

    Get PDF
    Over the past decade, perovskite solar cells have become one of the major research interests of the photovoltaic community, and they are now on the brink of catching up with the classical inorganic solar cells, with efficiency now reaching up to 25%. However, significant improvements are still achievable by reducing recombination losses. The aim of this work is to develop a fast and easy-to-use tool to pinpoint the main losses in perovskite solar cells. We use large-scale drift-diffusion simulations to get a better understanding of the light intensity dependence of the open-circuit voltage and how it correlates to the dominant recombination process. We introduce an automated identification tool using machine learning methods to pinpoint the dominant loss using the light intensity-dependent performances as an input. The machine learning was trained using >2 million simulations and gives an accuracy of the prediction up to 82%. Le Corre et al. demonstrate the application of machine learning methods to identify the dominant recombination process in perovskite solar cells with 82% accuracy. The machine learning algorithms are trained and tested using large-scale drift-diffusion simulations, and their applicability on real solar cells is also demonstrated on devices previously reported

    Key Parameters Requirements for Non‐Fullerene‐Based Organic Solar Cells with Power Conversion Efficiency >20%

    Get PDF
    The reported power conversion efficiencies (PCEs) of nonfullerene acceptor (NFA) based organic photovoltaics (OPVs) now exceed 14% and 17% for single‐junction and two‐terminal tandem cells, respectively. However, increasing the PCE further requires an improved understanding of the factors limiting the device efficiency. Here, the efficiency limits of single‐junction and two‐terminal tandem NFA‐based OPV cells are examined with the aid of a numerical device simulator that takes into account the optical properties of the active material(s), charge recombination effects, and the hole and electron mobilities in the active layer of the device. The simulations reveal that single‐junction NFA OPVs can potentially reach PCE values in excess of 18% with mobility values readily achievable in existing material systems. Furthermore, it is found that balanced electron and hole mobilities of >10−3 cm2 V−1 s−1 in combination with low nongeminate recombination rate constants of 10−12 cm3 s−1 could lead to PCE values in excess of 20% and 25% for single‐junction and two‐terminal tandem OPV cells, respectively. This analysis provides the first tangible description of the practical performance targets and useful design rules for single‐junction and tandem OPVs based on NFA materials, emphasizing the need for developing new material systems that combine these desired characteristics

    Understanding Dark Current-Voltage Characteristics in Metal-Halide Perovskite Single Crystals

    Get PDF
    Hybrid halide perovskites have great potential for application in optoelectronic devices. However, an understanding of some basic properties, such as charge-carrier transport, remains inconclusive, mainly due to the mixed ionic and electronic nature of these materials. Here, we perform temperature-dependent pulsed-voltage space-charge-limited current measurements to provide a detailed look into the electronic properties of methylammonium lead tribromide (MAPbBr(3)) and methylammonium lead triiodide (MAPbI(3)) single crystals. We show that the background carrier density in these crystals is orders of magnitude higher than that expected from thermally excited carriers from the valence band. We highlight the complexity of the system via a combination of experiments and drift-diffusion simulations and show that different factors, such as thermal injection from the electrodes, temperature-dependent mobility, and trap and ion density, influence the free-carrier concentration. We experimentally determine effective activation energies for conductivity of (349 +/- 10) meV for MAPbBr3 and (193 +/- 12) meV for MAPbI(3), which includes the sum of all of these factors. We point out that fitting the dark current density-voltage curve with a drift-diffusion model allows for the extraction of intrinsic parameters, such as mobility and trap and ion density. From simulations, we determine a charge-carrier mobility of 12.9 cm(2)/Vs, a trap density of 1.52 x 10(13) cm(-3), and an ion density of 3.19 x 10(12) cm(-3) for MAPbBr(3) single crystals. Insights into charge-carrier transport in metal-halide perovskite single crystals will be beneficial for device optimization in various optoelectronic applications

    Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements

    Get PDF
    Space-charge-limited current (SCLC) measurements have been widely used to study the charge carrier mobility and trap density in semiconductors. However, their applicability to metal halide perovskites is not straightforward, due to the mixed ionic and electronic nature of these materials. Here, we discuss the pitfalls of SCLC for perovskite semiconductors, and especially the effect of mobile ions. We show, using drift-diffusion (DD) simulations, that the ions strongly affect the measurement and that the usual analysis and interpretation of SCLC need to be refined. We highlight that the trap density and mobility cannot be directly quantified using classical methods. We discuss the advantages of pulsed SCLC for obtaining reliable data with minimal influence of the ionic motion. We then show that fitting the pulsed SCLC with DD modeling is a reliable method for extracting mobility, trap, and ion densities simultaneously. As a proof of concept, we obtain a trap density of 1.3 × 1013 cm-3, an ion density of 1.1 × 1013 cm-3, and a mobility of 13 cm2 V-1 s-1 for a MAPbBr3 single crystal

    Caribou herd dynamics : impacts of climate change on traditional and sport harvesting

    Get PDF
    Caribou (Rangifer tarandus) are a key species in Arctic ecosystems including northern Québec and Labrador. They play a central role in the ecology of predators and the structure of Arctic plant communities. In addition, caribou provide socioeconomic and cultural benefits from subsistence and sport hunting activities. Changes in the distribution and abundance of caribou due to global climate change would have serious biological, societal, and economic implications. Direct and indirect consequences of climate change on migratory caribou herds may include alteration in habitat use, migration patterns, foraging behaviour and demography. For example, caribou may experience a further northerly shift in distribution due to several factors including longer ice-free periods, increases in snowfall and extreme weather events, alterations in the fire regime, and changes in the distribution of insects and predators. Future research by Caribou Ungava, a research group interested in the ecology of migratory caribou in the context of climate change, will address the factors outlining variations in the population dynamics of caribou, implications for survival and reproduction, as well as the response of caribou habitat to different climate change scenarios. Management efforts focusing on mitigating greenhouse gases to reduce the potential effects of climate change, preserving high quality habitat, limiting anthropogenic landscape disturbances, and managing hunting in a sustainable manner, could alleviate stressors on migratory caribou of the QuébecLabrador peninsula

    The contamination of the surface of Vesta by impacts and the delivery of the dark material

    Full text link
    The Dawn spacecraft observed the presence of dark material, which in turn proved to be associated with OH and H-rich material, on the surface of Vesta. The source of this dark material has been identified with the low albedo asteroids, but it is still a matter of debate whether the delivery of the dark material is associated with a few large impact events, to micrometeorites or to the continuous, secular flux of impactors on Vesta. The continuous flux scenario predicts that a significant fraction of the exogenous material accreted by Vesta should be due to non-dark impactors likely analogous to ordinary chondrites, which instead represent only a minor contaminant in the HED meteorites. We explored the continuous flux scenario and its implications for the composition of the vestan regolith, taking advantage of the data from the Dawn mission and the HED meteorites. We used our model to show that the stochastic events scenario and the micrometeoritic flux scenario are natural consequences of the continuous flux scenario. We then used the model to estimate the amounts of dark and hydroxylate materials delivered on Vesta since the LHB and we showed how our results match well with the values estimated by the Dawn mission. We used our model to assess the amount of Fe and siderophile elements that the continuous flux of impactors would mix in the vestan regolith: concerning the siderophile elements, we focused our attention on the role of Ni. The results are in agreement with the data available on the Fe and Ni content of the HED meteorites and can be used as a reference frame in future studies of the data from the Dawn mission and of the HED meteorites. Our model cannot yet provide an answer to the fate of the missing non-carbonaceous contaminants, but we discuss possible reasons for this discrepancy.Comment: 31 pages, 7 figures, 4 tables. Accepted for publication on the journal ICARUS, "Dark and Bright Materials on Vesta" special issu

    Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness

    Get PDF
    Perovskite solar cells (PSCs) are one of the main research topics of the photovoltaic community; with efficiencies now reaching up to 24%, PSCs are on the way to catching up with classical inorganic solar cells. However, PSCs have not yet reached their full potential. In fact, their efficiency is still limited by nonradiative recombination, mainly via trap-states and by losses due to the poor transport properties of the commonly used transport layers (TLs). Indeed, state-of-the-art TLs (especially if organic) suffer from rather low mobilities, typically within 10-5 and 10-2 cm2 V-1 s-1, when compared to the high mobilities, 1-10 cm2 V-1 s-1, measured for perovskites. This work presents a comprehensive analysis of the effect of the mobility, thickness, and doping density of the transport layers based on combined experimental and modeling results of two sets of devices made of a solution-processed high-performing triple-cation (PCE ≈ 20%). The results are also cross-checked on vacuum-processed MAPbI3 devices. From this analysis, general guidelines on how to optimize a TL are introduced and especially a new and simple formula to easily calculate the amount of doping necessary to counterbalance the low mobility of the TLs

    15.34% efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive

    Get PDF
    Solution processed organic solar cells (OSCs) composed of all small molecules (ASM) are promising for production on an industrial scale owing to the properties of small molecules, such as well-defined chemical structures, high purity of materials, and outstanding repeatability from batch to batch synthesis. Remarkably, ASM OSCs with power conversion efficiency (PCE) beyond 13% were achieved by structure improvement of the electron donor and choosingY6as the electron acceptor. However, the fill factor (FF) is an obstacle that limits the further improvement of the PCE for these ASM OSCs. Herein, we focus on the FF improvement of recently reported ASM OSCs withBTR-Cl:Y6as the active layer by miscibility-induced active layer morphology optimization. The incorporation of fullerene derivatives, which have good miscibility with bothBTR-ClandY6, results in reduced bimolecular recombination and thus improved FF. In particular, whenca.5 wt% ofPC(71)BMwas added in the active layer, a FF of 77.11% was achieved without sacrificing the open circuit voltage (V-OC) and the short circuit current density (J(SC)), leading to a record PCE of 15.34% (certified at 14.7%) for ASM OSCs. We found that the optimized device showed comparable charge extraction, longer charge carrier lifetime, and slower bimolecular recombination rate compared with those of the control devices (w/o fullerene). Our results demonstrate that the miscibility driven regulation of active layer morphology by incorporation of a fullerene derivative delicately optimizes the active layer microstructures and improves the device performance, which brings vibrancy to OSC research

    Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors

    Get PDF
    The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest

    Tracking seabird migration in the tropical Indian Ocean reveals basin-scale conservation need

    Get PDF
    Summary Understanding marine predator distributions is an essential component of arresting their catastrophic declines.1,2,3,4 In temperate, polar, and upwelling seas, predictable oceanographic features can aggregate migratory predators, which benefit from site-based protection.5,6,7,8 In more oligotrophic tropical waters, however, it is unclear whether environmental conditions create similar multi-species hotspots. We track the non-breeding movements and habitat preferences of a tropical seabird assemblage (n = 348 individuals, 9 species, and 10 colonies in the western Indian Ocean), which supports globally important biodiversity.9,10,11,12 We mapped species richness from tracked populations and then predicted the same diversity measure for all known Indian Ocean colonies. Most species had large non-breeding ranges, low or variable residency patterns, and specific habitat preferences. This in turn revealed that maximum species richness covered >3.9 million km2, with no focused aggregations, in stark contrast to large-scale tracking studies in all other ocean basins.5,6,7,13,14 High species richness was captured by existing marine protected areas (MPAs) in the region; however, most occurred in the unprotected high seas beyond national jurisdictions. Seabirds experience cumulative anthropogenic impacts13 and high mortality15,16 during non-breeding. Therefore, our results suggest that seabird conservation in the tropical Indian Ocean requires an ocean-wide perspective, including high seas legislation.17 As restoration actions improve the outlook for tropical seabirds on land18,19,20,21,22 and environmental change reshapes the habitats that support them at sea,15,16 appropriate marine conservation will be crucial for their long-term recovery and whole ecosystem restoration
    corecore