70 research outputs found

    Vanadate effects on bone metabolism: fish cell lines as an alternative to mammalian in vitro systems

    Get PDF
    Vanadate, one of the most relevant forms of vanadium in solution, has been associated with the regulation of various enzyme activities (e.g. phosphatases, ribonucleases, ATPases, etc.) and shown to exhibit important biological effects. Several in vivo and in vitro studies have clearly demonstrated that any deficiency or excess of vanadium can seriously affect bone formation and its metabolism. Bone-related effects result largely from vanadium insulino-mimetic capabilities mediated by specific inhibition of protein tyrosine phosphatases (PTPases) and consequent activation of tyrosine kinase receptors (e.g. insulin receptor). Although mammals have been repetitively shown to be appropriate models to study vanadate mechanisms of action, fish have recently emerged as alternative models. Fish has been recognized as suitable model to study vertebrate bone formation and the natural presence of high quantities of vanadium in water makes it even more suitable to investigate vanadium effect on bone formation. Recent data obtained using fish bone-derived cells revealed that micromolar concentrations (5 mM) of monomeric and decameric vanadate slightly stimulate growth performances while strongly inhibiting extracellular matrix mineralization through mechanisms involving both alkaline phosphatase and MAPK pathways. Recent data obtained in fish cells will be discussed here and further compared to results obtained in mammalian systems

    Impairment of mineralization by metavanadate and decavanadate solutions in a fish bone-derived cell line

    Get PDF
    Vanadium, a trace metal known to accumulate in bone and to mimic insulin, has been shown to regulate mammalian bone formation using in vitro and in vivo systems. In the present work, short- and long-term effects of metavanadate (containing monomeric, dimeric, tetrameric and pentameric vanadate species) and decavanadate (containing decameric vanadate species) solutions on the mineralization of a fish bone-derived cell line (VSa13) were studied and compared to that of insulin. After 2 h of incubation with vanadate (10 μM in monomeric vanadate), metavanadate exhibited higher accumulation rates than decavanadate (6.85±0.40 versus 3.95±0.10 μg V/g of protein, respectively) in fish VSa13 cells and was also shown to be less toxic when applied for short periods. In longer treatments with both metavanadate and decavanadate solutions, similar effects were promoted: stimulation of cell proliferation and strong impairment (75%) of extracellular matrix (ECM) mineralization. The effect of both vanadate solutions (5 μM in monomeric vanadate), on ECM mineralization was increased in the presence of insulin (10 nM). It is concluded that chronic treatment with both vanadate solutions stimulated fish VSa13 cells proliferation and prevented ECM mineralization. Newly developed VSa13 fish cells appeared to be appropriate in the characterization of vanadate effects on vertebrate bone formation, representing a good alternative to mammalian systems

    Transcriptional regulation of gilthead seabream bone morphogenetic protein (BMP) 2 gene by bone- and cartilage-related transcription factors

    Get PDF
    Bone morphogenetic protein (BMP) 2 belongs to the transforming growth factor (3 (TGF(3) superfamily of cytokines and growth factors. While it plays important roles in embryo morphogenesis and organogenesis, BMP2 is also critical to bone and cartilage formation. Protein structure and function have been remarkably conserved throughout evolution and BMP2 transcription has been proposed to be tightly regulated, although few data is available. In this work we report the cloning and functional analysis of gilthead seabream BMP2 promoter. As in other vertebrates, seabream BMP2 gene has a 5' non-coding exon, a feature already present in DPP gene, the fruit fly ortholog of vertebrate BMP2 gene, and maintained throughout evolution. In silico analysis of seabream BMP2 promoter revealed several binding sites for bone and cartilage related transcription factors (TFs) and their functionality was evaluated using promoter-luciferase constructions and TF-expressing vectors. Runt -related transcription factor 3 (RUNX3) was shown to negatively regulate BMP2 transcription and combination with the core binding factor beta (CBF(3) further reduced transcriptional activity of the promoter. Although to a lesser extent, myocyte enhancer factor 2C (MEF2C) had also a negative effect on the regulation of BMP2 gene transcription, when associated with SRY (sex determining region Y)-box 9 (SOX9b). Finally, v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1) was able to slightly enhance BMP2 transcription. Data reported here provides new insights toward the better understanding of the transcriptional regulation of BMP2 gene in a bone and cartilage context. (C) 2015 Elsevier B.V. All rights reserved

    Vanadate and bone metabolism: effect on proliferation and mineralization of fish bone-derived cells

    Get PDF
    Vanadate is known for mimicking insulin action through activation of insulin and/or insulin like growth factor 1 (IGF 1) receptors. Vanadate insulin- like effect on bone-related metabolism has been previously investigated using mammalian in vitro cell systems but other vertebrate systems have rarely been used. We have recently demonstrated the suitability of a fish bone derived cell line (VSa13) to study anti-mineralogenic effects of vanadate. Here, we propose that vanadate stimulation of cell proliferation involves MAPK signalling pathway and IGF 1 receptor activation, while impairment of extracellular matrix (ECM) mineralization is likely to involve both MAPK and PI 3K pathways and insulin receptor activation

    New insights on vitamin K metabolism in senegalese sole (Solea senegalensis) based on ontogenetic and tissue-specific vitamin K epoxide reductase molecular data

    Get PDF
    Vitamin K (VK) is a key nutrient for several biological processes (e.g., blood clotting and bone metabolism). To fulfill VK nutritional requirements, VK action as an activator of pregnane X receptor (Pxr) signaling pathway, and as a co-factor of γ-glutamyl carboxylase enzyme, should be considered. In this regard, VK recycling through vitamin K epoxide reductases (Vkors) is essential and should be better understood. Here, the expression patterns of vitamin K epoxide reductase complex subunit 1 (vkorc1) and vkorc1 like 1 (vkorc1l1) were determined during the larval ontogeny of Senegalese sole (Solea senegalensis), and in early juveniles cultured under different physiological conditions. Full-length transcripts for ssvkorc1 and ssvkorc1l1 were determined and peptide sequences were found to be evolutionarily conserved. During larval development, expression of ssvkorc1 showed a slight increase during absence or low feed intake. Expression of ssvkorc1l1 continuously decreased until 24 h post-fertilization, and remained constant afterwards. Both ssvkors were ubiquitously expressed in adult tissues, and highest expression was found in liver for ssvkorc1, and ovary and brain for ssvkorc1l1. Expression of ssvkorc1 and ssvkorc1l1 was differentially regulated under physiological conditions related to fasting and re-feeding, but also under VK dietary supplementation and induced deficiency. The present work provides new and basic molecular clues evidencing how VK metabolism in marine fish is sensitive to nutritional and environmental conditions.FCT: UIDB/04326/2020. ALGASOLE-16-02-01-FMP-0058; RTI2018-099029-A-I00; RYC2018-025337-I.info:eu-repo/semantics/publishedVersio

    Fish models of induced osteoporosis

    Get PDF
    Osteopenia and osteoporosis are bone disorders characterized by reduced bone mineral density (BMD), altered bone microarchitecture and increased bone fragility. Because of global aging, their incidence is rapidly increasing worldwide and novel treatments that would be more efficient at preventing disease progression and at reducing the risk of bone fractures are needed. Preclinical studies are today a major bottleneck to the collection of new data and the discovery of new drugs, since they are commonly based on rodent in vivo systems that are time consuming and expensive, or in vitro systems that do not exactly recapitulate the complexity of low BMD disorders. In this regard, teleost fish, in particular zebrafish and medaka, have recently emerged as suitable alternatives to study bone formation and mineralization and to model human bone disorders. In addition to the many technical advantages that allow faster and larger studies, the availability of several fish models that efficiently mimic human osteopenia and osteoporosis phenotypes has stimulated the interest of the academia and industry toward a better understanding of the mechanisms of pathogenesis but also toward the discovery of new bone anabolic or antiresorptive compounds. This mini review recapitulates the in vivo teleost fish systems available to study low BMD disorders and highlights their applications and the recent advances in the field.UIDB/04326/2020, EAPA_151/2016/BLUEHUMANinfo:eu-repo/semantics/publishedVersio

    Keutel Syndrome, a review of 50 years of literature

    Get PDF
    Keutel syndrome (KS) is a rare autosomal recessive genetic disorder that was first identified in the beginning of the 1970s and nearly 30 years later attributed to loss-of-function mutations in the gene coding for the matrix Gla protein (MGP). Patients with KS are usually diagnosed during childhood (early onset of the disease), and the major traits include abnormal calcification of cartilaginous tissues resulting in or associated with malformations of skeletal tissues (e.g., midface hypoplasia and brachytelephalangism) and cardiovascular defects (e.g., congenital heart defect, peripheral pulmonary artery stenosis, and, in some cases, arterial calcification), and also hearing loss and mild developmental delay. While studies on Mgp-/- mouse, a faithful model of KS, show that pathologic mineral deposition (ectopic calcification) in cartilaginous and vascular tissues is the primary cause underlying many of these abnormalities, the mechanisms explaining how MGP prevents abnormal calcification remain poorly understood. This has negative implication for the development of a cure for KS. Indeed, at present, only symptomatic treatments are available to treat hypertension and respiratory complications occurring in the KS patients. In this review, we summarize the results published in the last 50 years on Keutel syndrome and present the current status of the knowledge on this rare pathology.CA-16115 - EJPRD2019-290 - UIDB/04326/2020info:eu-repo/semantics/publishedVersio

    Desenvolvimento de sistemas celulares de peixe adequados ao estudo da mineralização in vitro

    Get PDF
    Os peixes foram recentemente reconhecidos como organismos modelo apropriados para o estudo da biologia de vertebrados, particularmente de processos relacionados com a mineralização tecidular e o desenvolvimento do esqueleto. Apesar de existirem alguns estudos in vivo, a identificação de mecanismos associados à calcificação em peixes tem sido prejudicada pelo facto de não existirem sistemas celulares para estudos in vitro. Este artigo descreve um protocolo simples e de baixo custo adequado ao desenvolvimento de culturas celulares mineralogénicas, derivadas de tecidos calcificados de peixes.Fish have been recently recognized as a suitable model organism to study vertebrate biology, in particular physiological processes such as tissue mineralization and skeletal development. Despite various studies in vivo, identification of mechanisms associated with calcification in fish has been largely hampered by the lack of suitable in vitro cell systems. We describe here a simple and inexpensive protocol to develop mineralogenic cell cultures from fish calcified tissues. This protocol was successfully used to develop the first fish cell lines capable of mineralizing their extracellular matrix (from the vertebra of gilthead seabream Sparus aurata) and, more recently, applied to develop additional fish mineralogenic cell cultures from different fishes. We also describe a variety of biochemical and histological methods to characterize extracellular matrix during in vitro mineralization, in particular mineral deposition, and a protocol to enhance DNA transfer into fish bone-derived cells. Finally, we present recent expression data obtained using these cell lines to further demonstrate their suitability to study mechanisms of in vitro mineralization

    Zebrafish models to study ectopic calcification and calcium-associated pathologies

    Get PDF
    Ectopic calcification refers to the pathological accumulation of calcium ions in soft tissues and is often the result of a dysregulated action or disrupted function of proteins involved in extracellular matrix mineralization. While the mouse has traditionally been the go-to model organism for the study of pathologies associated with abnormal calcium deposition, many mouse mutants often have exacerbated phenotypes and die prematurely, limiting the understanding of the disease and the development of effective therapies. Since the mechanisms underlying ectopic calcification share some analogy with those of bone formation, the zebrafish (Danio rerio)—a well-established model for studying osteogenesis and mineralogenesis—has recently gained momentum as a model to study ectopic calcification disorders. In this review, we outline the mechanisms of ectopic mineralization in zebrafish, provide insights into zebrafish mutants that share phenotypic similarities with human pathological mineralization disorders, list the compounds capable of rescuing mutant phenotypes, and describe current methods to induce and characterize ectopic calcification in zebrafish.info:eu-repo/semantics/publishedVersio

    The zebrafish operculum: a powerful system to assess osteogenic bioactivities of molecules with pharmacological and toxicological relevance

    Get PDF
    Bone disorders affect millions of people worldwide and available therapeutics have a limited efficacy, often presenting undesirable side effects. As such, there is a need for novel molecules with bone anabolic properties. The aim of this work was to establish a rapid, reliable and reproducible method to screen for molecules with osteogenic activities, using the zebrafish operculum to assess bone formation. Exposure parameters were optimized through morphological analysis of the developing operculum of larvae exposed to calcitriol, a molecule with known pro-osteogenic properties. An exposure of 3 days initiated at 3 days post-fertilization was sufficient to stimulate operculum formation, while not affecting survival or development of the larvae. Dose dependent pro- and anti-osteogenic effects of calcitriol and cobalt chloride, respectively, demonstrated the sensitivity of the method and the suitability of the operculum system. A double transgenic reporter line expressing fluorescent markers for early and mature osteoblasts was used to gain insights into the effects of calcitriol and cobalt at the cellular level, with osteoblast maturation shown to be stimulated and inhibited, respectively, in the operculum of exposed fish. The zebrafish operculum represents a consistent, robust and rapid screening system for the discovery of novel molecules with osteogenic, anti-osteoporotic or osteotoxic activity.Portuguese Foundation for Science and Technology (FCT) [PD/BD/52425/2013, PD/00117/2012]European Commission (ERDF-COMPETE) [PEst-C/MAR/LA0015/2011]FCT [UID/Multi/04326/2013, PTDC/MAR/112992/2009
    corecore