497 research outputs found

    Observable Graphs

    Full text link
    An edge-colored directed graph is \emph{observable} if an agent that moves along its edges is able to determine his position in the graph after a sufficiently long observation of the edge colors. When the agent is able to determine his position only from time to time, the graph is said to be \emph{partly observable}. Observability in graphs is desirable in situations where autonomous agents are moving on a network and one wants to localize them (or the agent wants to localize himself) with limited information. In this paper, we completely characterize observable and partly observable graphs and show how these concepts relate to observable discrete event systems and to local automata. Based on these characterizations, we provide polynomial time algorithms to decide observability, to decide partial observability, and to compute the minimal number of observations necessary for finding the position of an agent. In particular we prove that in the worst case this minimal number of observations increases quadratically with the number of nodes in the graph. From this it follows that it may be necessary for an agent to pass through the same node several times before he is finally able to determine his position in the graph. We then consider the more difficult question of assigning colors to a graph so as to make it observable and we prove that two different versions of this problem are NP-complete.Comment: 15 pages, 8 figure

    Flow Motifs Reveal Limitations of the Static Framework to Represent Human interactions

    Full text link
    Networks are commonly used to define underlying interaction structures where infections, information, or other quantities may spread. Although the standard approach has been to aggregate all links into a static structure, some studies suggest that the time order in which the links are established may alter the dynamics of spreading. In this paper, we study the impact of the time ordering in the limits of flow on various empirical temporal networks. By using a random walk dynamics, we estimate the flow on links and convert the original undirected network (temporal and static) into a directed flow network. We then introduce the concept of flow motifs and quantify the divergence in the representativity of motifs when using the temporal and static frameworks. We find that the regularity of contacts and persistence of vertices (common in email communication and face-to-face interactions) result on little differences in the limits of flow for both frameworks. On the other hand, in the case of communication within a dating site (and of a sexual network), the flow between vertices changes significantly in the temporal framework such that the static approximation poorly represents the structure of contacts. We have also observed that cliques with 3 and 4 vertices con- taining only low-flow links are more represented than the same cliques with all high-flow links. The representativity of these low-flow cliques is higher in the temporal framework. Our results suggest that the flow between vertices connected in cliques depend on the topological context in which they are placed and in the time sequence in which the links are established. The structure of the clique alone does not completely characterize the potential of flow between the vertices

    Dynamics of latent voters

    Get PDF
    We study the effect of latency on binary-choice opinion formation models. Latency is introduced into the models as an additional dynamic rule: after a voter changes its opinion, it enters a waiting period of stochastic length where no further changes take place. We first focus on the voter model and show that as a result of introducing latency, the average magnetization is not conserved, and the system is driven toward zero magnetization, independently of initial conditions. The model is studied analytically in the mean-field case and by simulations in one dimension. We also address the behavior of the Majority Rule model with added latency, and show that the competition between imitation and latency leads to a rich phenomenology

    Efficient algorithms for deciding the type of growth of products of integer matrices

    Full text link
    For a given finite set Σ\Sigma of matrices with nonnegative integer entries we study the growth of maxt(Σ)=max{A1...At:AiΣ}. \max_t(\Sigma) = \max\{\|A_{1}... A_{t}\|: A_i \in \Sigma\}. We show how to determine in polynomial time whether the growth with tt is bounded, polynomial, or exponential, and we characterize precisely all possible behaviors.Comment: 20 pages, 4 figures, submitted to LA

    On Primitivity of Sets of Matrices

    Full text link
    A nonnegative matrix AA is called primitive if AkA^k is positive for some integer k>0k>0. A generalization of this concept to finite sets of matrices is as follows: a set of matrices M={A1,A2,,Am}\mathcal M = \{A_1, A_2, \ldots, A_m \} is primitive if Ai1Ai2AikA_{i_1} A_{i_2} \ldots A_{i_k} is positive for some indices i1,i2,...,iki_1, i_2, ..., i_k. The concept of primitive sets of matrices comes up in a number of problems within the study of discrete-time switched systems. In this paper, we analyze the computational complexity of deciding if a given set of matrices is primitive and we derive bounds on the length of the shortest positive product. We show that while primitivity is algorithmically decidable, unless P=NPP=NP it is not possible to decide primitivity of a matrix set in polynomial time. Moreover, we show that the length of the shortest positive sequence can be superpolynomial in the dimension of the matrices. On the other hand, defining P{\mathcal P} to be the set of matrices with no zero rows or columns, we give a simple combinatorial proof of a previously-known characterization of primitivity for matrices in P{\mathcal P} which can be tested in polynomial time. This latter observation is related to the well-known 1964 conjecture of Cerny on synchronizing automata; in fact, any bound on the minimal length of a synchronizing word for synchronizing automata immediately translates into a bound on the length of the shortest positive product of a primitive set of matrices in P{\mathcal P}. In particular, any primitive set of n×nn \times n matrices in P{\mathcal P} has a positive product of length O(n3)O(n^3)

    On the complexity of computing the capacity of codes that avoid forbidden difference patterns

    Full text link
    We consider questions related to the computation of the capacity of codes that avoid forbidden difference patterns. The maximal number of nn-bit sequences whose pairwise differences do not contain some given forbidden difference patterns increases exponentially with nn. The exponent is the capacity of the forbidden patterns, which is given by the logarithm of the joint spectral radius of a set of matrices constructed from the forbidden difference patterns. We provide a new family of bounds that allows for the approximation, in exponential time, of the capacity with arbitrary high degree of accuracy. We also provide a polynomial time algorithm for the problem of determining if the capacity of a set is positive, but we prove that the same problem becomes NP-hard when the sets of forbidden patterns are defined over an extended set of symbols. Finally, we prove the existence of extremal norms for the sets of matrices arising in the capacity computation. This result makes it possible to apply a specific (even though non polynomial) approximation algorithm. We illustrate this fact by computing exactly the capacity of codes that were only known approximately.Comment: 7 pages. Submitted to IEEE Trans. on Information Theor
    corecore