2,661 research outputs found

    Curvature Spectra and Nongaussianities in the Roulette Inflation Model

    Full text link
    Using the gradient expansion method of Rigopoulos, Shellard and van Tent which treats cosmological perturbations as gradients on top of a homogeneous and isotropic FRW background, we study the production of nongaussianities in the roulette model of inflation. Investigating a number of trajectories within this two-field model of inflation, we find that while the superhorizon influence of the isocurvature modes on the curvature bispectrum produces nonzero contribution to f_NL, the effect is negligible next to the standard inflationary prediction |f_NL| ~ n_s - 1. This is the case in both the squeezed and equilateral configurations of the bispectrum, although the former is slightly larger in the trajectories under consideration.Comment: 23 pages, 6 figures, 3 tables, 1 appendix; Added references, slightly extended section

    Spectral analysis of the high-energy IceCube neutrinos

    Get PDF
    A full energy and flavor-dependent analysis of the three-year high-energy IceCube neutrino events is presented. By means of multidimensional fits, we derive the current preferred values of the high-energy neutrino flavor ratios, the normalization and spectral index of the astrophysical fluxes, and the expected atmospheric background events, including a prompt component. A crucial assumption resides on the choice of the energy interval used for the analyses, which significantly biases the results. When restricting ourselves to the ~30 TeV - 3 PeV energy range, which contains all the observed IceCube events, we find that the inclusion of the spectral information improves the fit to the canonical flavor composition at Earth, (1:1:1), with respect to a single-energy bin analysis. Increasing both the minimum and the maximum deposited energies has dramatic effects on the reconstructed flavor ratios as well as on the spectral index. Imposing a higher threshold of 60 TeV yields a slightly harder spectrum by allowing a larger muon neutrino component, since above this energy most atmospheric tracklike events are effectively removed. Extending the high-energy cutoff to fully cover the Glashow resonance region leads to a softer spectrum and a preference for tau neutrino dominance, as none of the expected electron antineutrino induced showers have been observed so far. The lack of showers at energies above 2 PeV may point to a broken power-law neutrino spectrum. Future data may confirm or falsify whether or not the recently discovered high-energy neutrino fluxes and the long-standing detected cosmic rays have a common origin.Comment: 33 pages, 13 figures. v3: one extra figure (fig. 13), some references updated and some formulae moved to the Appendix. It matches version published in PR
    corecore