23 research outputs found

    Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication

    Get PDF
    A hybrid cell sheet engineering approach was developed using ultra-thin nanofiber arrays to host the formation of composite nanofiber/cell sheets. It was found that confluent aligned cell sheets could grow on uniaxially-aligned and crisscrossed nanofiber arrays with extremely low fiber densities. The porosity of the nanofiber sheets was sufficient to allow aligned linear myotube formation from differentiated myoblasts on both sides of the nanofiber sheets, in spite of single-side cell seeding. The nanofiber content of the composite cell sheets is minimized to reduce the hindrance to cell migration, cell-cell contacts, mass transport, as well as the foreign body response or inflammatory response associated with the biomaterial. Even at extremely low densities, the nanofiber component significantly enhanced the stability and mechanical properties of the composite cell sheets. In addition, the aligned nanofiber arrays imparted excellent handling properties to the composite cell sheets, which allowed easy processing into more complex, thick 3D structures of higher hierarchy. Aligned nanofiber array-based composite cell sheet engineering combines several advantages of material-free cell sheet engineering and polymer scaffold-based cell sheet engineering; and it represents a new direction in aligned cell sheet engineering for a multitude of tissue engineering applications

    Synthetic vascular tissue and method of forming same

    Get PDF
    Disclosed are composite materials that can more closely mimic the mechanical characteristics of natural elastic tissue, such as vascular tissue. Disclosed materials include a combination of elastic nanofibers and non-elastic nanofibers. Also disclosed are a variety of methods for forming the composite materials. Formation methods generally include the utilization of electrospinning methods to form a fibrous composite construct including fibers of different mechanical characteristics

    Biocompatible Silk/Polymer Energy Harvesters Using Stretched Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) Nanofibers

    Get PDF
    Energy harvested from human body movement can produce continuous, stable energy to portable electronics and implanted medical devices. The energy harvesters need to be light, small, inexpensive, and highly portable. Here we report a novel biocompatible device made of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers on flexible substrates. The nanofibers are prepared with electrospinning followed by a stretching process. This results in aligned nanofibers with diameter control. The assembled device demonstrates high mechanical-to-electrical conversion performance, with stretched PVDF-HFP nanofibers outperforming regular electrospun samples by more than 10 times. Fourier transform infrared spectroscopy (FTIR) reveals that the stretched nanofibers have a higher β phase content, which is the critical polymorph that enables piezoelectricity in polyvinylidene fluoride (PVDF). Polydimethylsiloxane (PDMS) is initially selected as the substrate material for its low cost, high flexibility, and rapid prototyping capability. Bombyx Mori silkworm silk fibroin (SF) and its composites are investigated as promising alternatives due to their high strength, toughness, and biocompatibility. A composite of silk with 20% glycerol demonstrates higher strength and larger ultimate strain than PDMS. With the integration of stretched electrospun PVDF-HFP nanofibers and flexible substrates, this pilot study shows a new pathway for the fabrication of biocompatible, skin-mountable energy devices

    The fusion of tissue spheroids attached to pre-stretched electrospun polyurethane scaffolds

    Get PDF
    Publisher Copyright: © 2014, © The Author(s) 2014. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.Effective cell invasion into thick electrospun biomimetic scaffolds is an unsolved problem. One possible strategy to biofabricate tissue constructs of desirable thickness and material properties without the need for cell invasion is to use thin (<2 µm) porous electrospun meshes and self-assembling (capable of tissue fusion) tissue spheroids as building blocks. Pre-stretched electrospun meshes remained taut in cell culture and were able to support tissue spheroids with minimal deformation. We hypothesize that elastic electrospun scaffolds could be used as temporal support templates for rapid self-assembly of cell spheroids into higher order tissue structures, such as engineered vascular tissue. The aim of this study was to investigate how the attachment of tissue spheroids to pre-stretched polyurethane scaffolds may interfere with the tissue fusion process. Tissue spheroids attached, spread, and fused after being placed on pre-stretched polyurethane electrospun matrices and formed tissue constructs. Efforts to eliminate hole defects with fibrogenic tissue growth factor-β resulted in the increased synthesis of collagen and periostin and a dramatic reduction in hole size and number. In control experiments, tissue spheroids fuse on a non-adhesive hydrogel and form continuous tissue constructs without holes. Our data demonstrate that tissue spheroids attached to thin stretched elastic electrospun scaffolds have an interrupted tissue fusion process. The resulting tissue-engineered construct phenotype is a direct outcome of the delicate balance of the competing physical forces operating during the tissue fusion process at the interface of the pre-stretched elastic scaffold and the attached tissue spheroids. We have shown that with appropriate treatments, this process can be modulated, and thus, a thin pre-stretched elastic polyurethane electrospun scaffold could serve as a supporting template for rapid biofabrication of thick tissue-engineered constructs without the need for cell invasion.publishersversionPeer reviewe

    Role of Draw Rate and Molecular Weight when Electrospun Nanofibers are Post‐Drawn with Residual Solvent

    No full text
    Abstract The postdrawing process is poorly understood for polymer nanofibers due to the difficulty of manipulating nanofiber structures. Here, an angled track system facilitates postdrawing of individual nanofibers with control of parameters including molecular weight, draw rate, draw ratio, and solvent evaporation time. In this study, the effects of molecular weight, draw rate, and relative residual solvent content on final nanofiber properties are investigated. Molecular weight is first investigated to clarify any influence polymer chain length can have on drawing in facilitating or hindering chain extensibility. Polyacrylonitrile nanofibers with 50 and 150 kDa molecular weights behave similarly with postdrawing resulting in reduced diameters and enhanced mechanics. Since solvent quantity during drawing is a time sensitive component it is meaningful to assess the impact of draw rate on the chemical and structural makeup of postdrawn fibers. Chemical bond vibrations and chain orientation are sensitive to draw rate when polycaprolactone nanofibers are dried for 3 minutes prior to postdrawing, but this dependency to draw rate is not observed when fibers are postdrawn immediately upon collection. These findings demonstrate that the amount of retained solvent at collection is relevant to this postprocessing approach, and highlights the dynamics of solvent evaporation during postdrawing

    Cardiomyogenic Differentiation of Human Bone Marrow-derived Mesenchymal Stem Cell Spheroids within Electrospun Collagen Nanofiber Mats

    No full text
    Collagen is the major structural protein in myocardium and contributes to tissue strength and integrity, cellular orientation, and cell-cell and cell-matrix interactions. Significant post-myocardial infarction related loss of cardiomyocytes and cardiac tissue, and their subsequent replacement with fibrous scar tissue, negatively impacts endogenous tissue repair and regeneration capabilities. To overcome such limitations, tissue engineers are working toward developing a 3D cardiac patch which not only mimics the structural, functional, and biological hierarchy of the native cardiac tissue, but also could deliver autologous stem cells and encourage their homing and differentiation. In this study, we examined the utility of electrospun, randomly-oriented, type-I collagen nanofiber (dia = 789 +/- 162 nm) mats on the cardiomyogenic differentiation of human bone marrow-derived mesenchymal stem cells (BM-MSC) spheroids, in the presence or absence of 10 mu M 5-azacytidine (aza). Results showed that these scaffolds are biocompatible and enable time-dependent evolution of early (GATA binding protein 4: GATA4), late (cardiac troponin I: cTnI), and mature (myosin heavy chain: MHC) cardiomyogenic markers, with a simultaneous reduction in CD90 (stemness) expression, independent of aza-treatment. Aza-exposure improved connexin-4 expression and sustained sarcomeric alpha-actin expression, but provided only transient improvement in cardiac troponin T (cTnT) expression. Cell orientation and alignment significantly improved in these nanofiber scaffolds over time and with aza-exposure. Although further quantitative in vitro and in vivo studies are needed to establish the clinical applicability of such stem-cell laden collagen nanofiber mats as cardiac patches for cardiac tissue regeneration, our results underscore the benefits of 3D milieu provided by electrospun collagen nanofiber mats, aza, and spheroids on the survival, cardiac differentiation and maturation of human BM-MSCs

    Precisely Assembled Nanofiber Arrays as a Platform to Engineer Aligned Cell Sheets for Biofabrication

    No full text
    A hybrid cell sheet engineering approach was developed using ultra-thin nanofiber arrays to host the formation of composite nanofiber/cell sheets. It was found that confluent aligned cell sheets could grow on uniaxially-aligned and crisscrossed nanofiber arrays with extremely low fiber densities. The porosity of the nanofiber sheets was sufficient to allow aligned linear myotube formation from differentiated myoblasts on both sides of the nanofiber sheets, in spite of single-side cell seeding. The nanofiber content of the composite cell sheets is minimized to reduce the hindrance to cell migration, cell-cell contacts, mass transport, as well as the foreign body response or inflammatory response associated with the biomaterial. Even at extremely low densities, the nanofiber component significantly enhanced the stability and mechanical properties of the composite cell sheets. In addition, the aligned nanofiber arrays imparted excellent handling properties to the composite cell sheets, which allowed easy processing into more complex, thick 3D structures of higher hierarchy. Aligned nanofiber array-based composite cell sheet engineering combines several advantages of material-free cell sheet engineering and polymer scaffold-based cell sheet engineering; and it represents a new direction in aligned cell sheet engineering for a multitude of tissue engineering applications
    corecore