6 research outputs found

    Radial Velocity Survey for Planets around Young stars (RVSPY) A transiting warm super-Jovian planet around HD 114082, a young star with a debris disk

    Full text link
    Aiming to detect planetary companions to young stars with debris disks via the radial velocity method, we observed HD114082 during April 2018 - August 2022 as one of the targets of our RVSPY program (Radial Velocity Survey for Planets around Young stars). We used the FEROS spectrograph, mounted to the MPG/ESO 2.2 m telescope in Chile, to obtain high signal-to-noise spectra and time series of precise radial velocities (RVs). Additionally, we analyzed archival HARPS spectra and TESS photometric data. We used the CERES, CERES++ and SERVAL pipelines to derive RVs and activity indicators and ExoStriker for the independent and combined analysis of the RVs and TESS photometry. We report the discovery of a warm super-Jovian companion around HD114082 based on a 109.8±\pm0.4 day signal in the combined RV data from FEROS and HARPS, and on one transit event in the TESS photometry. The best-fit model indicates a 8.0±\pm1.0 Mjup companion with a radius of 1.00±\pm0.03 Rjup in an orbit with a semi-major axis of 0.51±\pm0.01 au and an eccentricity of 0.4±\pm0.04. The companions orbit is in agreement with the known near edge-on debris disk located at about 28 au. HD114082b is possibly the youngest (15±\pm6 Myr), and one of only three younger than 100 Myr giant planetary companions for which both their mass and radius have been determined observationally. It is probably the first properly model-constraining giant planet that allows distinguishing between hot and cold-start models. It is significantly more compatible with the cold-start model.Comment: 10 pages, 9 figures, 5 tables; Accepted for publication in A&A Letter

    The extremely high albedo of LTT 9779 b revealed by CHEOPS

    No full text
    Context. Optical secondary eclipse measurements of small planets can provide a wealth of information about the reflective properties of these worlds, but the measurements are particularly challenging to attain because of their relatively shallow depth. If such signals can be detected and modeled, however, they can provide planetary albedos, thermal characteristics, and information on absorbers in the upper atmosphere. Aims. We aim to detect and characterize the optical secondary eclipse of the planet LTT 9779 b using the CHaracterising ExOPlanet Satellite (CHEOPS) to measure the planetary albedo and search for the signature of atmospheric condensates. Methods. We observed ten secondary eclipses of the planet with CHEOPS. We carefully analyzed and detrended the light curves using three independent methods to perform the final astrophysical detrending and eclipse model fitting of the individual and combined light curves. Results. Each of our analysis methods yielded statistically similar results, providing a robust detection of the eclipse of LTT 9779 b with a depth of 115±24 ppm. This surprisingly large depth provides a geometric albedo for the planet of 0.80−0.17+0.10, consistent with estimates of radiative-convective models. This value is similar to that of Venus in our own Solar System. When combining the eclipse from CHEOPS with the measurements from TESS and Spitzer, our global climate models indicate that LTT 9779 b likely has a super metal-rich atmosphere, with a lower limit of 400× solar being found, and the presence of silicate clouds. The observations also reveal hints of optical eclipse depth variability, but these have yet to be confirmed. Conclusions. The results found here in the optical when combined with those in the near-infrared provide the first steps toward understanding the atmospheric structure and physical processes of ultrahot Neptune worlds that inhabit the Neptune desert

    Toll-like Receptor 2 Ligands on the Staphylococcal Cell Wall Downregulate Superantigen-induced T Cell Activation and Prevent Toxic Shock Syndrome

    No full text
    Staphylococcal superantigens are pyrogenic exotoxins that cause massive T cell activation leading to toxic shock syndrome and death. Despite the strong adaptive immune response induced by these toxins, infections by superantigen-producing staphylococci are very common clinical events. We hypothesized that this may be partly a result of staphylococcal strains having developed strategies that downregulate the T cell response to these toxins. Here we show that the human interleukin-2 response to staphylococcal superantigens is inhibited by the simultaneous presence of bacteria. Such a downregulatory effect is the result of peptidoglycan-embedded molecules binding to Toll-like receptor 2 and inducing interleukin-10 production and apoptosis of antigen-presenting cells. We corroborated these findings in vivo by showing substantial prevention of mortality after simultaneous administration of staphylococcal enterotoxin B with either heat-killed staphylococci or Staphylococcus aureus peptidoglycan in mouse models of superantigen-induced toxic shock syndrome
    corecore