23 research outputs found

    Evaluation of ultrasound sensors for transcranial photoacoustic sensing and imaging

    Full text link
    Biomedical photoacoustic (PA) imaging is typically used to exploit absorption-based contrast in soft tissue at depths of several centimeters. When it is applied to measuring PA waves generated in the brain, the acoustic properties of the skull bone cause not only strong attenuation but also a distortion of the wavefront, which diminishes image resolution and contrast. This effect is directly proportional to bone thickness. As a result, transcranial PA imaging in humans has been challenging to demonstrate. We measured the acoustic constraints imposed by the human skull to design an ultrasound sensor suitable for transcranial PA imaging and sensing. We imaged the phantoms using a planar Fabry-Perot sensor and employed a range of piezoelectric and optical ultrasound sensors to measure the frequency dependent acoustic transmission through human cranial bone. Transcranial PA images show typical frequency and thickness dependent attenuation and aberration effects associated with acoustic propagation through bone. The skull insertion loss measurements showed significant transmission at low frequencies. In comparison to conventional piezoelectric sensors, the performance of plano-concave optical resonator (PCOR) ultrasound sensors was found to be highly suitable for transcranial PA measurements. They possess high acoustic sensitivity at a low acoustic frequency range that coincides with the transmission window of human skull bone. PCOR sensors showed low noise equivalent pressures and flat frequency response which enabled them to outperform conventional piezoelectric transducers in transcranial PA sensing experiments. Transcranial PA sensing and imaging requires ultrasound sensors with high sensitivity at low acoustic frequencies, and a broad and ideally uniform frequency response. We designed and fabricated PCOR sensors and demonstrated their suitability for transcranial PA sensing

    Advanced Nanophotonics: Silicon-Organic Hybrid Technology

    Get PDF
    Integrated photonic devices have gained increasing research interests. Especially silicon photonics have become very attractive for various optical applications. Using silicon-on-insulator as a material platform provides the ability to fabricate photonic devices with electronic devices on a single chip. Driven by substantial research investments, the integration of photonic devices on silicon-on-insulator substrates has reached a degree of maturity that already permits industrial adoption. However, silicon has the disadvantage of linear electro-optical effects, and, therefore, advanced modulation formats are difficult to realize when using silicon-based high-speed modulators. Hence, a new approach was proposed: the silicon-organic hybrid technology. This technology is a viable extension of the silicon-on-insulator material system for efficient high-speed modulation. We herewith present our theoretical and experimental investigations of the silicon-organic hybrid slot-waveguide ring resonator. The advanced device design is described in detail, which allows using both, the efficient silicon-on-insulator strip-waveguides and the silicon-organic hybrid slot-waveguides in single ring resonator. For the first time, we report the transmission spectra of such a resonator covered with an electro-optical polymer.Integrierte photonische Bauelemente werden in der Forschung immer bedeutender. Besonders die Siliziumphotonik ist für verschiedene optische Anwendungen sehr attraktiv. Die Verwendung von Silizium-auf-Isolator-Materialsystemen bietet die Möglichkeit, photonische Bauelemente mit elektronischen Geräten auf einem einzelnen Chip zu entwickeln. Durch erhebliche Forschungsinvestitionen hat die photonische Integration auf Silizium-auf-Isolator-Substraten einen Reifegrad, der bereits Industriemaßstäben genügt. Jedoch hat Silizium keinen linearen elektrooptischen Effekt und damit sind moderne Modulationsformate nur schwierig zu realisieren. Daher wird seit eingen Jahren ein neuer Ansatz, die Silizium-Organik Hybridtechnologie, verfolgt. Diese Technologie ist eine tragfähige Ausdehnung des Silizium-auf-Isolator-Materialsystems für eine effiziente Hochgeschwindigkeitsmodulation und optische Signalverarbeitung. In diesem Artikel präsentieren wir unsere theoretischen und experimentellen Untersuchungen zu einem Silizium-Organik Hybrid Ringresonator. Das Design und die Herstellung des neuartigen nanophotonischen Bauelements werden im Detail beschrieben. Der demonstrierte Ringresonator kombiniert die Vorteile zweier verschiedener Wellenleiterarten in einem einzelnen Ring, dem verlustarmen Kanal-Wellenleiter und dem Silizium-organischen Hybridschlitzwellenleiter. Wir demonstrieren erstmals ein Transmissionsspektrum eines solchen Ringresonators, der mit einem elektro-optischen Polymer beschichtet ist

    Theorie der Modenlinienspektroskopie zur optischen Charakterisierung von Polymerschichten

    Get PDF
    Die Modenlinienspektroskopie kann zur hochpräzisen Charakterisierung von Polymerschichten bezüglich des Brechungsindex verwendet werden. Das vorliegende Manuskript behandelt die Theorie der Modenlinienspektroskopie und beginnt dabei mit den theoretischen Grundlagen eines planaren Wellenleiters, die zum Verständnis der Modenlinienspektroskopie notwendig sind. Die hier präsentierten expliziten Herleitungen können genutzt werden, um die Modenlinienspektroskopie so zu modifizieren, dass auch die Messung des Pockelseffektes möglich ist. Eine Anwendungsmöglichkeit soll in der zukünftigen Bestimmung des Pockelskoeffizienten bestehen, der für die Weiterentwicklung von polymerbasierten elektrooptischen Modulatoren benötigt wird. Zudem werden der Aufbau und die experimentelle Herangehensweisen beschrieben und die Brechungsindexbestimmung wird exemplarisch am Beispiel einer Wirt-Gast-Polymerschicht demonstriert.M-Line spectroscopy can be used for high precision measurements of polymer layers. The present manuscript deals with the theory of m-line spectroscopy and thus begins with the theoretical background of a planar waveguide structure, which is necessary for a deeper understanding of m-line spectroscopy. The explicit derivations presented here can be used to modify the m-line spectroscopy in such a way that the measurement of the Pockels effect is also possible. One application is to be obtained in the future configuration of the Pockels coefficients, which is needed to optimize electro-optical modulators. In addition, the set-up and the experimental approach are described. Finally, a host-guest polymer layer is experimentally characterized in terms of the refractive index

    Post-hoc analysis of outcome of intravenous thrombolysis in infarcts of infratentorial localization in the WAKE-UP trial

    Get PDF
    Introduction: In WAKE-UP (Efficacy and Safety of MRI-based Thrombolysis in Wake-Up Stroke), patients with an acute stroke of unknown onset time were randomized to treatment with intravenous alteplase or placebo, guided by MRI. Methods: In this exploratory post-hoc secondary analysis we compared clinical and imaging data, as well as treatment effects and safety of intravenous thrombolysis between patients with infra- vs supratentorial stroke. Results: Forty-eight out of 503 randomized patients (9.5%) presented with a stroke involving the cerebellum or brainstem. Patients with infratentorial stroke were younger compared to patients with supratentorial stroke (mean age 60 vs 66 years), more frequently male (85% vs 62%), and less severely affected (median NIHSS 4.5 vs 6.0). There was no heterogeneity for treatment effect between supratentorial (OR 1.67 95% CI 1.11 – 2.51) and infratentorial (OR 1.31 95% CI 0.41 – 4.22) sub-groups (test for interaction p=0.70). In patients with infratentorial stroke, favorable outcome (a score of 0-1 on the modified Rankin scale (mRS) at 90 days) was observed in 12/22 patients (54.5%) in the alteplase group and in 13/25 patients (52.0%) in the placebo group (p=0.59). The primary safety endpoint (death or mRS 4-6 at day 90) occurred in 3 patients of the alteplase group (13.6%) and 3 patients in the placebo group (12.0%); p=0.74. Discussion: WAKE-UP was underpowered for demonstrating treatment effect in subgroup analyses however, based on our current results, there is no evidence to recommend withholding MRI-guided thrombolysis in patients with unknown onset stroke of infratentorial localization

    Silicon-organic hybrid photonics: Overview of recent advances, electro-optical effects and CMOS-integration concepts

    Get PDF
    In recent decades, much research effort has been invested in the development of photonic integrated circuits, and silicon-on-insulator technology has been established as a reliable platform for highly scalable silicon-based electro-optical modulators. However, the performance of such devices is restricted by the inherent material properties of silicon. An approach to overcoming these deficiencies is to integrate organic materials with exceptionally high optical nonlinearities into a silicon-on-insulator photonic platform. Silicon–organic hybrid photonics has been shown to overcome the drawbacks of silicon-based modulators in terms of operating speed, bandwidth, and energy consumption. This work reviews recent advances in silicon–organic hybrid photonics and covers the latest improvements to single components and device concepts. Special emphasis is given to the in-device performance of novel electro-optical polymers and the use of different electro-optical effects, such as the linear and quadratic electro-optical effect, as well as the electric-field-induced linear electro-optical effect. Finally, the inherent challenges of implementing non-linear optical polymers on a silicon photonic platform are discussed and a perspective for future directions is given

    Comparative Study of Nano-Slot Silicon Waveguides Covered by Dye Doped and Undoped Polymer Cladding

    Get PDF
    Nonlinear optical dyes doped in optical polymer matrices are widely used for electro-optical devices. Linear optical properties change with dye concentration, which leads to a change in modal properties, especially in nano-structured integrated waveguides such as silicon slot-waveguides. Here, we investigate the influence of a nonlinear optical dye on the performance of a silicon-organic hybrid slot-waveguide. A simulation study of the modal and optical confinement properties is carried out and dependence of the structural parameters of the slot-waveguide and the organic cladding material is taken into account. As cladding material, a guest-host polymer system is employed comprising the nonlinear optical dye Disperse Red 1 (DR1) doped in a poly[methyl methacrylate] (PMMA) matrix. The refractive indices of doped and undoped PMMA were deduced from ellipsometric data. We present a guideline for an optimized slot-waveguide design for the fabrication in silicon-on-insulator technology giving rise to scalable, high-performance integrated electro-optical modulators
    corecore