314 research outputs found

    Magnitude of Alloresponses to MHC Class I/II Expressing Human Cardiac Myocytes is Limited by their Intrinsic Ability to Process and Present Antigenic Peptides

    Get PDF
    In this investigation we have explored the relationship between the weak allogenicity of cardiac myocytes and their capacity to present allo-antigens by examining the ability of a human cardiac myocyte cell line (W-1) to process and present nominal antigens. W-1 cells (HLA-A*0201 and HLA-DR β1*0301) pulsed with the influenza A matrix 1 (58-66) peptide (M1) were able to serve as targets for the HLA-A*0201 restricted CTL line PG, specific for M1-peptide. However, PG-CTLs were unable to lyse W-1 target cells infected with a recombinant vaccinia virus expressing the M1 protein (M1-VAC). Pretreatment of these M1-VAC targets with IFN-γ partially restored their ability to process and present the M1 peptide. However, parallel studies demonstrated that IFN-γ pretreated W-1's could not process tetanus toxin (TT) or present the TT(830-843) peptide to HLA-DR3 restricted TT-primed T cells. Semi-quantitative RT-PCR measurements revealed significantly lower constitutive levels of expression for MHC class I, TAP-1/2, and LMP-2/7 genes in W-1s that could be elevated by pretreatment with IFN-γ to values equal to or greater than those expressed in EBV-PBLs. However, mRNA levels for the genes encoding MHC class II, Ii, CIITA, and DMA/B were markedly lower in both untreated and IFN-γ pretreated W-1s relative to EBV-PBLs. Furthermore, pulse-chase analysis of the corresponding genes revealed significantly lower protein levels and longer half-life expression in W-1s relative to EBV-PBLs. These results suggest that weak allogenicity of cardiac myocytes may be governed by their limited expression of MHC genes and gene products critical for antigen processing and presentation

    Ecological immunogenetics of life-history traits in a model amphibian

    Get PDF
    Major histocompatibility complex (MHC) genes determine immune repertoires and social preferences of vertebrates. Immunological regulation of microbial assemblages associated with individuals influences their sociality, and should also affect their life-history traits. We exposed Xenopus laevis tadpoles to water conditioned by adult conspecifics. Then, we analysed tadpole growth, development and survivorship as a function of MHC class I and class II peptide-binding region amino acid sequence similarities between tadpoles and frogs that conditioned the water to which they were exposed. Tadpoles approached metamorphosis earlier and suffered greater mortality when exposed to immunogenetically dissimilar frogs. The results suggest that developmental regulatory cues, microbial assemblages or both are specific to MHC genotypes. Tadpoles may associate with conspecifics with which they share microbiota to which their genotypes are well adapted

    Sexual Transmission of XMRV: A Potential Infection Route

    Get PDF
    Although XMRV dissemination in humans is a matter of debate, the prostate of select patients seem to harbor XMRV, which raises questions about its potential route of transmission. We established a model of infection in rhesus macaques inoculated with XMRV. In spite of the intravenous inoculation, all infected macaques exhibited readily detectable XMRV signal in the reproductive tract of all 4 males and 1 female during both acute and chronic infection stages. XMRV showed explosive growth in the acini of prostate during acute but not chronic infection. In seminal vesicles, epididymis, and testes, XMRV protein production was detected throughout infection in interstitial or epithelial cells. In the female monkey, epithelial cells in the cervix and vagina were also positive for XMRV gag. The ready detection of XMRV in the reproductive tract of male and female macaques infected intravenously suggests the potential for sexual transmission for XMRV

    Immune-Complex Mimics as a Molecular Platform for Adjuvant-Free Vaccine Delivery

    Get PDF
    Protein-based vaccine development faces the difficult challenge of finding robust yet non-toxic adjuvants suitable for humans. Here, using a molecular engineering approach, we have developed a molecular platform for generating self-adjuvanting immunogens that do not depend on exogenous adjuvants for induction of immune responses. These are based on the concept of Immune Complex Mimics (ICM), structures that are formed between an oligomeric antigen and a monoclonal antibody (mAb) to that antigen. In this way, the roles of antigens and antibodies within the structure of immune complexes are reversed, so that a single monoclonal antibody, rather than polyclonal sera or expensive mAb cocktails can be used. We tested this approach in the context of Mycobacterium tuberculosis (MTB) infection by linking the highly immunogenic and potentially protective Ag85B with the oligomeric Acr (alpha crystallin, HspX) antigen. When combined with an anti-Acr monoclonal antibody, the fusion protein formed ICM which bound to C1q component of the complement system and were readily taken up by antigen-presenting cells in vitro. ICM induced a strong Th1/Th2 mixed type antibody response, which was comparable to cholera toxin adjuvanted antigen, but only moderate levels of T cell proliferation and IFN-γ secretion. Unfortunately, the systemic administration of ICM did not confer statistically significant protection against intranasal MTB challenge, although a small BCG-boosting effect was observed. We conclude that ICM are capable of inducing strong humoral responses to incorporated antigens and may be a suitable vaccination approach for pathogens other than MTB, where antibody-based immunity may play a more protective role

    Defense-in-depth by mucosally administered anti-HIV dimeric IgA2 and systemic IgG1 mAbs: complete protection of rhesus monkeys from mucosal SHIV challenge.

    Get PDF
    Although IgA is the most abundantly produced immunoglobulin in humans, its role in preventing HIV-1 acquisition, which occurs mostly via mucosal routes, remains unclear. In our passive mucosal immunizations of rhesus macaques (RMs), the anti-HIV-1 neutralizing monoclonal antibody (nmAb) HGN194, given either as dimeric IgA1 (dIgA1) or dIgA2 intrarectally (i.r.), protected 83% or 17% of the RMs against i.r. simian-human immunodeficiency virus (SHIV) challenge, respectively. Data from the RV144 trial implied that vaccine-induced plasma IgA counteracted the protective effector mechanisms of IgG1 with the same epitope specificity. We thus hypothesized that mucosal dIgA2 might diminish the protection provided by IgG1 mAbs targeting the same epitope. To test our hypothesis, we administered HGN194 IgG1 intravenously (i.v.) either alone or combined with i.r. HGN194 dIgA2. We enrolled SHIV-exposed, persistently aviremic RMs protected by previously administered nmAbs; RM anti-human IgG responses were undetectable. However, low-level SIV Gag-specific proliferative T-cell responses were found. These animals resemble HIV-exposed, uninfected humans, in which local and systemic cellular immune responses have been observed. HGN194 IgG1 and dIgA2 used alone and the combination of the two neutralized the challenge virus equally well in vitro. All RMs given only i.v. HGN194 IgG1 became infected. In contrast, all RMs given HGN194 IgG1+dIgA2 were completely protected against high-dose i.r. SHIV-1157ipEL-p challenge. These data imply that combining suboptimal defenses at the mucosal and systemic levels can completely prevent virus acquisition. Consequently, active vaccination should focus on defense-in-depth, a strategy that seeks to build up defensive fall-back positions well behind the fortified frontline.We thank Dr. J. Mascola for providing mAb VRC01, Dr. S.-L. Hu for providing SHIV-1157ip Env proteins, and Dr. W. Marasco for providing mAb Fm-6. We thank Dr. K. Rogers and K. Kinsley for TRIM5α genotype analysis, Dr. S. Lee for assistance in statistical analysis, V. Shanmuganathan for technical assistance, and Juan Esquivel for assistance with the preparation of the manuscript. This was work supported by the Bill and Melinda Gates Foundation Collaboration for AIDS Vaccine Discovery (CAVD) UCL-VDC Grant 38637 (R.A.W.). This project was also funded in part by NIH grants P01 AI048240, R01 AI100703 and R37 AI034266 to RMR. Base grant P51 OD011132 provided support to the Yerkes National Primate Research Center. The Southwest National Primate Research Center is supported by an NIH primate center base grant (previously NCRR grant P51 RR013986; currently Office of Research Infrastructure Programs/OD P51 OD011133).This is the accepted manuscript of a paper published in Vaccine (Sholukh AM, et al., Vaccine, 2015, 33, 2086-2095, doi:10.1016/j.vaccine.2015.02.020). The final version is available at http://dx.doi.org/10.1016/j.vaccine.2015.02.02
    corecore